ZrO2-Ni composites - properties and characterization
Justyna Zygmuntowicz, Paweł Falkowski, Aleksandra Miazga, Katarzyna Konopka
Quarterly No. 4, 2016 pages 249-254
DOI:
keywords: composites ZrO2-Ni, uniaxial pressing, mechanical properties
abstract In recent years dynamic progress has been seen in almost all areas of engineering materials. It has contributed to the development of new, innovative materials such as composite materials. Nowadays, a great deal of research is focused on ceramic/metal composites due to their potential to be used in many applications. An example of such a material is ZrO2-Ni composites. This paper describes ZrO2-Ni composites formed by uniaxial pressing and sintering in an argon atmosphere. The microstructure, selected physical and mechanical properties such as hardness, fracture toughness and the biaxial strength of the composites were investigated. The sintered composites had a relative density close to 99% of the theoretical density. The distribution of the component phases was uniform. It was found that the presence of Ni particles affects the mechanical properties of the ZrO2 matrix. It was also revealed that the composites exhibit a lower bending strength than ceramic materials obtained under the same conditions. The composites show a decrease in hardness in regard to the hardness of monolithic ZrO2. The presence of Ni particles in the composites causes dissipation of propagating crack energy, which results in an increased fracture toughness value measured for ZrO2-Ni composites in comparison to the value obtained for monolithic zirconia.