We use COOKIES and other similar technologies that generate data for analyzes and statistics. You can block the saving of COOKIES by changing your browser settings. Detailed information about COOKIES and other technologies in Privacy policy.

COMPOSITES THEORY AND PRACTICE

formerly: KOMPOZYTY (COMPOSITES)

Structure characteristics in glass/aluminum hybrid laminates after bending strength test

Monika Ostapiuk, Barbara Surowska, Jarosław Bieniaś, Krzysztof Majerski

Quarterly No. 4, 2013 pages 237-240

DOI:

keywords: fiber metal laminates, bending test, microstructure

article version pdf (0.92MB)

abstract During the last few years, many scientists and industries have become interested in developing new materials which would maintain good mechanical properties and low density comparable with aluminum alloys. This can be observed predominantly in the aircraft or aerospace industry. Fiber metal laminates (FML) are a new kind of composite, particularly the Glare® type laminate, which consists of aluminum and a glass/epoxy composite. FML combine both the good characteristics of metal such as ductility and durability with the benefits of fiber composite materials such as high specific strength, high specific stiffness, good corrosion resistance and fatigue resistance. In this paper, an FML consisting of aluminum and glass fiber/epoxy layers has been introduced. The FML were produced by the autoclave technique. The aluminum sheets were special prepared with chromic acid and sulphuric acid aluminum anodizing. Two combinations of fiber configuration were selected: Al/[0]/Al and Al[0/90]/Al. The structure characterization after bending tests is shown and discussed. Microstructural analysis has been carried out using an optical microscope. The three point-bending tests were conducted according to standard specifications. Preliminary studies have shown that the metal layers in the laminates and the composite polymer layer, particularly in the bend area in the laminate, have a significant impact on the nature of the damage. Laminate destruction indicates the complexity of the degradation process of these materials. The orientation of the reinforcing fibers has an influence on the degree of destruction of the laminate structure which may have a decisive effect on the ability of forming laminates. An important factor influencing the properties of the laminate as a whole is to provide high adhesive properties of the composite-metal connections.

Wykonanie: www.ip7.pl