Agnieszka Krawczyńska¹, Krzysztof Biesiada², Andrzej Olszyna³ Politechnika Warszawska, Wydział Inżynierii Materiałowej, ul. Wołoska 141, 02-507 Warszawa

KOMPOZYTY Al₂O₃-SiC_w

Przedstawiono wyniki badań nad modyfikacją właściwości Al₂O₃, mającą na celu zwiększenie odporności materiału na kruche pękanie poprzez wprowadzenie do osnowy ceramicznych wiskersów węglika krzemu (β-SiC). Technika wytwarzania materiałów kompozytowych Al₂O₃+x% wag.SiC_w (x = 0, 5, 10, 15, 20) obejmuje: mieszanie proszków, suszenie, granulowanie, prasowanie jednoosiowe p = 20 MPa, dogęszczanie izostatyczne p = 120 MPa oraz spiekanie próbek w warunkach $T = 1650^{\circ}$ C/1 h, p = 35 MPa w atmosferze argonu (rys. 3). Następnie oznaczono właściwości fizyczne kompozytów, takie jak: gęstość, porowatość, nasiąkliwość metodą hydrostatyczną (rys. 4). Przeprowadzono również przykładową jakościową analizę fazową kompozytu Al₂O₃+15% SiC_w, która wykazała występowanie Al₂O₃ oraz dwóch odmian (politypów) węglika krzemu - β (rys. 5). Zbadano także własności wytrzymałościowe: twardość (HV) i odporność na kruche pękanie (metodą pomiaru długości pęknięć z odcisku Vickersa) (rys. 7). W wyniku spiekania kompozytów Al₂O₃+x% wag.SiC_w (x = 0, 5, 10, 15, 20) pod ciśnieniem (p = 35 MPa) otrzymano materiały o zagęszczeniu nie mniejszym niż 96%, twardości 18 GPa (dla Al₂O₃+20% wag. SiC_w) i współczynniku intensywności naprężeń $K_{IC} = 6$ MPa · m^{1/2} (dla Al₂O₃+20% wag. SiC_w). Otrzymane wartości współczynnika intensywności naprężeń obserwowane w badanych kompozytach spowodowane są obecnością wiskersów SiC (odchylanie i mostkowanie pęknięć).

Słowa kluczowe: materiały ceramiczne, kompozyty ceramiczne, odporność na kruche pękanie

Al₂O₃-SiC_w COMPOSITES

The study is concerned with the modification of the properties of Al₂O₃, in particular aimed at improving the fracture toughness of this material, by introducing ceramic whiskers of the silicon carbide (β -SiC) into its matrix. The technological operations involved in the production of the Al₂O₃+x%wt.SiC_w (x = 0, 5, 10, 15, 20) composite are: mixing the starting powders, drying the mixture, granulating, uniaxial pressing at *p* = 20 MPa, isostatic compacting at *p* = 120 MPa, and hot pressing sintering in *T* = 1650°C, *p* = 35 MPa for 1 h in argon (Fig. 3). The physical properties of the Al₂O₃+x%SiC_w composites thus produced, such as the density, porosity and absorptivity were determined using the hydrostatic method (Fig. 4). The phases identified in the Al₂O₃+15%SiC_w composite by a qualitative phase analysis were Al₂O₃ and two variations of β -SiC (Fig. 5). Investigation the strength properties of the composites hot-pressed under a pressure of 35 MPa show a high hardness of 18 GPa (for Al₂O₃+20%wt.SiC_w) and stress intensity factor *K*_{IC} of 6 MPa · m^{1/2} (for Al₂O₃+20%wt.SiC_w). The value of the stress intensity factor measured in the Al₂O₃+x%wt.SiC_w (x = 0, 5, 10, 15, 20) composites can be attributed to the presence of the whiskers SiC (crack deviation and bridging).

Keywords: ceramic materials, ceramic composites, fracture toughness

WPROWADZENIE

Ceramika Al₂O₃ ma wiele interesujących właściwości z punktu widzenia zastosowań. Do jej najważniejszych zalet należą: niska gęstość, stosunkowo wysoka twardość, niski współczynnik rozszerzalności cieplnej, wysoki współczynnik przewodnictwa cieplnego, odporność na działanie wysokich temperatur i odporność na ścieranie [1]. Jednak jej główną wadą jest mała odporność na pękanie. Poprawić tę własność można przez wytworzenie kompozytów, których osnową jest Al₂O₃, a wzmocnieniem cząstki - włókna czy właśnie wiskersy [2, 3].

Perspektywy zastosowań kompozytów Al_2O_3 -SiC_w są wciąż analizowane. Najszerzej jest przebadane ich zastosowanie na narzędzia skrawające [4, 5]. Spełniają one wszystkie idące w tym kierunku wymagania, tj.

odznaczają się wysoką twardością, ponadto mają wysokie przewodnictwo cieplne, które wraz z niskim współczynnikiem rozszerzalności cielnej pozwala na uzyskanie dużej odporności narzędzia na gwałtowne zmiany temperatur [6-8].

Przeprowadzone badania mają na celu modyfikację wpływu udziału objętościowego wiskersów na wybrane właściwości mechaniczne kompozytów Al₂O₃-SiC_w.

Celem niniejszej pracy jest modyfikacja wybranych właściwości wytrzymałościowych (twardość, odporność na kruche pękanie) Al₂O₃ poprzez wprowadzenie do osnowy zmiennego udziału wiskersów SiC.

^{1, 2} mgr inż., ³ prof. dr hab. inż.

PRACE DOŚWIADCZALNE

Materiałami do badań były proszek α -Al₂O₃ produkcji Taimei Co. Ltd Japonia oraz wiskersy β -SiC firmy Alfa Aesar Niemcy. Czystość chemiczna α -Al₂O₃ wynosiła 99,99%, a powierzchnia właściwa 14,1 m²/g. Na rysunku 1 przedstawiono morfologię proszku α -Al₂O₃ oraz rozkład wielkości cząstek.

Rys. 1. Morfologia proszku oraz rozkład wielkości cząstek α -Al₂O₃ Fig. 1. Morphology and the grain size distribution of the α -Al₂O₃ powder

Wiskersy β -SiC charakteryzowały się czystością na poziomie 99,5% oraz stosunkiem długości (d_{max}) do szerokości (l_{szer}) 20:1. Morfologię oraz charakterystykę opisującą kształt wybranych parametrów pokazano na rysunku 2.

Z użytych do badań materiałów wykonano mieszaniny proszkowe α -Al₂O₃+x%wag.SiC_w (x = 0, 5, 10, 15, 20) o założonym składzie drogą homogenizacji w młynku kulowym w alkoholu etylowym. Po wysuszeniu proszki granulowano, a następnie formowano metodą prasowania jednoosiowego pod ciśnieniem 20 MPa i doprasowywano izostatycznie pod ciśnieniem 120 MPa. W wyniku prasowania otrzymano próbki walcowe o wymiarach ϕ 15x10 mm. Zagęszczanie przeprowadzono metodą spiekania przy parametrach: $T = 1650^{\circ}$ C, 1 h, p = 35 MPa. Technikę wytwarzania materiałów kompozytowych z udziałem wiskersów przedstawiono schematycznie na rysunku 3.

a)

Rys. 2. Morfologia (a) oraz rozkłady wybranych parametrów opisujących $(l(\perp)_{\text{szer}}, d_{\text{max}})$ kształt wiskersów β -SiC (b)

Fig. 2. Morphology (a) and the size distribution of selection parameters for whiskers β -SiC (b)

Spieczone kształtki poddano procesowi szlifowania i polerowania przy użyciu past diamentowych 3, 1 i ¹/₄ µm, a następnie oznaczono ich właściwości fizyczne, takie jak: gęstość, porowatość, nasiąkliwość metodą ważenia hydrostatycznego za pomocą wagi RADWAG WPS. Wyznaczono moduł Younga (*E*) z reguły mieszanin, twardość HV (przy obciążeniu 3 kG) oraz współczynnik intensywności naprężeń K_{IC} (metodą pomiaru długości pęknięć z odcisku Vickersa) na kruchościomierzu FV-700B firmy Future-Tech.

Skład fazowy badano na dyfraktometrze PHILIPS 1830 przy użyciu promieniowania CuK α . Jakościową analizę fazową przeprowadzono na podstawie zapisów wykonanych w zakresie kątowym 2 Θ 20÷120° z krokiem 2 Θ - 0,05°, czas zliczania 3 s, błąd pomiaru 2÷3%. Obserwacje mikrostruktury przeprowadzono z użyciem mikroskopu optycznego NEOPHOT oraz mikroskopu skaningowego (SEM) LEO 1530.

- Rys. 3. Technika wytwarzania materiałów kompozytowych α -Al₂O₃+ +x%wag.SiC_w (x = 0, 5, 10, 15, 20)
- Fig. 3. Flow chart of the fabrication of the $\alpha\text{-Al}_2O_3\text{+}x\%wt.SiC_w$ (x = 0, 5, 10, 15, 20) composites

WYNIKI BADAŃ I ICH OMÓWIENIE

Wyniki badania gęstości względnej (dw), nasiąkliwości (N) oraz porowatości zamkniętej (P_z) przedstawiono w formie graficznej na rysunku 4.

- Rys. 4. Zmiany gęstości względnej (*dw*), nasiąkliwości (*N*) i porowatości zamkniętej (*P_z*) kompozytu α-Al₂O₃+x%SiC_w w zależności od udziału (% wag.) SiC_w w kompozycie
- Fig. 4. Relative density (*d_w*), absorptivity (*N*) and close porosity (*P₂*) of a α-Al₂O₃+x%SiC_w composite depending on the (% wt.) SiC_w content

- Rys. 5. Przykładowa analiza fazowa kompozytu α -Al₂O₃+15%wag.SiC_w spiekanego w warunkach 1650°C/1 h, p = 35 MPa
- Fig. 5. Phase analysis of the α -Al2O3+15%wag.SiCw composite hot pressed at $T = 1650^{\circ}$ C for 1 hour, p = 35 MPa

Przeprowadzona przykładowa jakościowa analiza fazowa kompozytu α -Al₂O₃+x%SiC_w z zawartością x = 15% wag. SiC_w wykazała występowanie następujących faz zgodnie z kartami JCPDS: Al₂O₃ - 10-0173, SiC - 29-1129 polityp 24R, SiC - 76-1625 (rys. 5).

Przykładowe mikrostruktury kompozytów Al_2O_3 + +x%wag.SiC_w (x = 5, 10, 15, 20) przedstawiono na rysunku 6. Zaobserwować na nich można równomierny rozkład wiskersów β-SiC w osnowie ceramicznej Al_2O_3 .

Kolejnym etapem było wyznaczenie właściwości mechanicznych, takich jak moduł Younga E, wyliczony z reguły mieszanin (1), twardość HV₃ oraz krytyczny współczynnik intensywności naprężeń K_{IC} metodą pomiaru pęknięć z odcisku Vickersa.

Moduł Younga E dla kompozytów Al₂O₃+ +x%wag.SiC_w został wyznaczony z reguły mieszanin według zależności

$$E_{\text{Al}_2\text{O}_3 + \text{x}\%\text{wag.SiC}_{\text{w}}} = \frac{E_O \cdot E_w}{(V_O \cdot E_w + V_w \cdot E_O)}$$
(1)

gdzie:

- E_0, E_w moduły odpowiednio osnowy Al₂O₃ i wiskersów β-SiC,
- V_O i V_w ułamki objętościowe odpowiednio osnowy Al₂O₃ i wiskersów β-SiC.

Jego wartość zwiększała się wraz ze wzrostem udziału wiskersów β -SiC w kompozycie od 390 GPa dla czystego Al₂O₃ do 420 GPa dla Al₂O₃++20%wag.SiC_w.

Następnie wyznaczono twardość HV₃ oraz krytyczny współczynnik intensywności naprężeń K_{IC} (z pomiaru długości pęknięć z odcisku Vickersa). Do wyznaczenia K_{IC} zastosowano zależność Niihary

$$K_{\rm IC} = 0,\,048\cdot\phi^{-3/5}\cdot HV\cdot\sqrt{a}\cdot\left(\frac{E}{H}\right)^{2/5}\left(\frac{l}{a}\right)^{-1/2} \,(2)$$

Na rysunku 7 przedstawiono zmiany twardości i krytycznego współczynnika intensywności naprężeń (K_{IC}) badanych kompozytów Al₂O₃+x%wag.SiC_w (x = 5, 10, 15, 20) w funkcji zawartości wiskersów SiC.

Rys. 7. Wpływ udziału wiskersów SiC na twardość i krytyczny współczynnik intensywności K_{IC} kompozytu Al₂O₃+x%SiC_w spiekanego w warunkach 1650°C/1 h, p = 35 MPa

Fig. 7. Effect of the SiC_w admixture on the hardness and stress intensity factor K_{IC} of a hot-pressed Al₂O₃+x%SiC_w composite (1650°C/1 h, p = 35 MPa)

Z przedstawionych wyników pomiaru twardości badanych kompozytów $Al_2O_3+x\%wag.SiC_w$ (x = 0, 5, 10, 15, 20) spiekanych pod ciśnieniem można stwierdzić, że wprowadzanie wiskersów β -SiC do osnowy korundowej powoduje wzrost twardości z 14,2 GPa dla czystego spieku Al $_2O_3$ do 18,4 GPa dla kompozytu Al $_2O_3$ +20%wag.SiCw.

Również odporność na kruche pękanie (K_{IC}) badanych kompozytów Al₂O₃+x%wag.SiC_w (x = 0, 5, 10, 15, 20) zwiększa się wraz ze wzrostem udziału wiskersów SiC (dla czystego spieku Al₂O₃ wartość współczynnika K_{IC} wynosi 3,89 MPa · m^{1/2}, natomiast po wprowadzeniu do osnowy 20%wag.SiC_w wartość K_{IC} wzrasta o około 65% do wartości 6 MPa · m^{1/2}).

W celu wyjaśnienia przyczyny wzrostu odporności na kruche pękanie kompozytów $Al_2O_3+x\%wag.SiC_w$ (x = 5, 10, 15, 20) przeprowadzono badania propagacji pęknięć, powstających w wyniku wciskania wgłębnika Vickersa. Przedstawiony sposób propagacji pęknięć w kompozytach sugeruje, że za wzrost odporności na kruche pękanie jest odpowiedzialny mechanizm odchylania i mostkowania pęknięć na wiskersach β-SiC.

PODSUMOWANIE

Przeprowadzone badania nad modyfikacją właściwości Al_2O_3 poprzez wprowadzenie do osnowy twardych wiskersów ceramicznych węglika krzemu β -SiC wykazały, że stopień zagęszczenia otrzymanych kompo- zy-tów jest na poziomie 99% (od 0 do 15% wag. SiC_w). Dalszy wzrost udziału wiskersów SiC (dla 20% wag. SiC_w) powoduje spadek wartości gęstości względnej (*dw*) do około 96%. Z wynikami gęstości względnej badanych kompozytów $Al_2O_3+x\%$ wag.SiC_w (x = 0, 5, 10, 15, 20) korelują wartości nasiąkliwości i porowa-tości.

Wprowadzanie wiskersów SiC do osnowy Al_2O_3 powoduje wzrost modułów Younga, twardości kompozytów od 14,2 GPa dla 0% wag. SiC_w w osnowie do 18,4 GPa dla $Al_2O_3+20\%$ wag.SiC_w.

Współczynnik intensywności naprężeń K_{IC} wzrasta z 3,89 MPa · m^{1/2} dla czystego spieku Al₂O₃ do 6 MPa · m^{1/2} dla Al₂O₃+20%wag.SiC_w.

Wzrost właściwości wytrzymałościowych kompozytów Al_2O_3 -SiC_w należy przypisać obecności ziaren fazy ceramicznej β -SiC. Grupa mechanizmów odpowiedzialnych za obserwowane uplastycznienie w badanych kompozytach jest bezpośrednio związana blokowaniem, mostkowaniem i odchylaniem pęknięć na wiskersach β -SiC.

Rys. 8. Przykładowa propagacja pęknięć dla kompozytu $Al_2O_3+15\%$ wag.SiC_w spiekanego w warunkach 1650°C/1 h, p = 35 MPa Fig. 8. Example cracks propagation observed in the $Al_2O_3+15\%$ wt.SiC_w composite

Praca była finansowana z grantu PBZ-KBN-100/T08.

LITERATURA

- [1] Olszyna A.R., Ceramika supertwarda, WPW, Warszawa 2001.
- [2] Yongquing Fu, Gu Y.W., Hejun Du, SiC whisker toughened Al₂O₃-(Ti, W)C ceramic matrix composites, Scripta Materialia 2001, 44, 111-116.
- [3] Lin G.Y., Lei T.C., Microstructure, mechanical properties and thermal shock behavior of Al₂O₃+ZrO₂+SiCw composites, Ceramics International 1998, 24, 313-326.
- [4] Young Mok Ko, Won Tae Kwon, Young-Wook Kim, Development of Al₂O₃-SiC composite tool for machining application, Ceramics International 2004, 30, 2081-2086.

- [5] Chuanzhen H., Xing A., Development of advanced composite ceramic tool material, Materials Research Bulletin 1996, 31, 8, 951-956.
- [6] Kato A., Nakamura H., Tamari N., Tanaka T., Kondo I., Usefulness of alumina-coated SiC whiskers in the preparation of whiskey-reinforced alumina ceramics, Ceramics International 1995, 21, 1-4.
- [7] Garnier V., Fantozzi G., Nruyen D., Dubois J., Thollet G., Influence of SiC whisker morphology and nature of SiC/Al₂O₃ interface on thermomechanical properties of SiC reinforced Al₂O₃ composites, Journal of European Ceramic Society 2005, 25, 3485-3493.
- [8] Ye F., Lei T.C., Zhou Y., Interface structure and mechanical properties of Al₂O₃-SiC_w ceramic matrix composite, Materials Science and Engineering 2000, 305-309.

Recenzent Jan Leżański