Beata Macherzyńska¹, Jan Piekarczyk², Stanisław Błażewicz³

Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, ul. Mickiewicza 30, 30-059 Kraków

ROZSZERZALNOŚĆ WILGOTNOŚCIOWA KOMPOZYTÓW C/C

Przedstawiono wyniki badań rozszerzalności wilgotnościowej kompozytów węgiel-węgiel (C/C) wzmacnianych włóknami w jednym - 1D i dwóch nawzajem prostopadłych kierunkach - 2D. Kompozyty C/C były otrzymywane z ultrawysokomodulowych włókien grafitowych K-1100 i żywicy fenolowo-formaldehydowej jako prekursora osnowy węglowej. Wilgotnościowy współczynnik rozszerzalności α_w dla kompozytów 1D badany zgodnie z kierunkiem ułożenia włókien przyjmował wartości ujemne i wynosił około $\alpha_w \cong -2 \cdot 10^{-6} [1/\%]$. Podobne wartości współczynnika α_w otrzymano dla kompozytów 2D badanych w obu kierunkach. Dla kompozytu 1D współczynnik α_w mierzony w kierunku prostopadłym do ułożenia włókien przyjmował wartość dodatnią równą 7,5 $\cdot 10^{-5} [1/\%]$. Badano również próbki poddane napromieniowaniu neutronami (o fluencji 7,3 $\cdot 10^{12} n/cm^2$). Nie stwierdzono jednak istotnego wpływu na wartość α_w . W pracy określono także wpływ napromieniowania neutronami kompozytów C/C na zmianę chłonności wody i wilgotność próbek.

MOISTURE EXPANSION OF CARBON/CARBON COMPOSITE MATERIALS

The results of humidity effect of 1D and 2D C/C composite materials are presented in this paper. These materials were made of ultra-high modulus graphite fibres (K-1100) and phenol-formaldehyde as a carbon matrix precursor. 1D C/C composite materials measured according to the direction arrangement of fibres, had the moisture expansion coefficient, α_w of about $-2 \cdot 10^{-6}$ [1/%] (Tab. 1). Similar results of α_w were obtained for 2D carbon composite materials measured in two directions. The positive and one order of magnitude higher coefficient $\alpha_w \cong 7.5 \cdot 10^{-5}$ [%/mm] was observed for 1D carbon composite measured perpendicularly to the fibres direction. Neutron irradiation effect on moisture expansion of C/C composite at a fluence dose of $7.3 \cdot 10^{12}$ n/cm² was examined. The measurements revealed no significant change on α_w value. Additionally, the influence of neutron irradiation on water absorption and humidity of the samples was determined (Tab. 2).

WSTĘP

Rozwój techniki wymaga stosowania coraz bardziej nowoczesnych rozwiązań konstrukcyjnych, a co za tym idzie nowoczesnych materiałów. Do grupy takich materiałów można zaliczyć kompozyty wzmacniane włóknami, których właściwości można zmieniać w szerokim zakresie [1-3].

W ostatnich latach wzrosło zapotrzebowanie na elementy konstrukcyjne, zachowujące swoje wymiary w różnych warunkach pracy, takich jak: obciążenie mechaniczne, temperatura, wilgotność, próżnia, zmienne środowisko chemiczne czy wreszcie promieniowanie.

Konstrukcje takie mogą znaleźć zastosowanie jako elementy nośne układów optycznych i pomiarowych, konstrukcje łączników teleskopów, elementy nośne źródeł promieniowania w urządzeniach spektroskopowych lub jako elementy nośne układów optycznych i pomiarowych pracujących w podwyższonych temperaturach [4].

Z tego względu interesujące wydają się być materiały kompozytowe wykorzystujące ultrawysokomodułowe włókna grafitowe [5]. Włókna takie charakteryzują się doskonałymi właściwościami sprężystymi (moduł Younga wzdłuż osi włókna ~900 GPa), jak również doskonałymi właściwościami cieplnymi (niski współczynnik rozszerzalności cieplnej, wysokie przewodnictwo cieplne). Wprowadzenie tego typu włókien do osnowy węglowej kompozytu powoduje podwyższenie wytrzymałości i sprężystości materiału oraz stwarza możliwość uzyskania stabilności kształtu przy zmianie warunków otoczenia (wilgotność, temperatura, promieniowanie) [6].

MATERIAŁY I METODY

Kompozyty C/C

Kompozyty C/C otrzymywano z włókien grafitowych (K-1100) i żywicy fenolowo-formaldehydowej jako prekursora osnowy węglowej. Przygotowano prepregi w formie płaskich taśm zawierających przesycone żywicą włókna ułożone w jednym kierunku o grubości ~0,1mm, z których następnie formowano kształtki kompozytów 1D i 2D. Kompozyty 2D składały sie z trzech lub dziewięciu warstw ułożonych do siebie prostopadle, natomiast kompozyty 1D składały się z dziewięciu warstw. Część przygotowanych próbek

¹ dr inż., ² dr, ³ prof. dr hab. inż.

poddano napromieniowaniu neutronami o fluencji $7,3 \cdot 10^{17} \text{ n/cm}^2$ [7].

Do badań współczynnika rozszerzalności wilgotnościowej przygotowano próbki o długości od 10 do 15 mm.

Wyznaczanie rozszerzalności wilgotnościowej

Wpływ wilgotności atmosfery na zmianę wymiarów geometrycznych próbek kompozytów określa wilgotnościowy współczynnik rozszerzalności liniowej α_w . Współczynnik ten określa wzór

$$\frac{\Delta l}{l_0} = \alpha_w \cdot \Delta W \tag{1}$$

w którym względna zmiana wymiarów ($\Delta l/l_0$) zależy od zmiany wilgotności (ΔW) i wilgotnościowego współczynnika α_w [1/%]. Pomiary α_w przeprowadzono w zakresie wilgotności od 50 do 90% w temperaturze pokojowej. W tym celu skonstruowano odpowiedni układ pomiarowy z możliwością regulacji wilgotności, temperatury oraz utrzymywania założonych warunków przez ustalony czas.

Oznaczanie chłonności wody i wilgotności

Oznaczanie chłonności wody i wilgotności wykonano zgodnie z polskimi normami. Wodochłonność (w procentach) wyrażono jako stosunek masy pochłoniętej wody do początkowej masy próbki [8]

$$X = \frac{m_2 - m_1}{m_1} \cdot 100$$
 (2)

gdzie:

 m_1 - masa próbki (przed zanurzeniem w wodzie), g,

 m_2 - masa próbki po wyjęciu z wody, g.

Wilgotność próbki (w procentach) oznaczono jako stosunek wody zawartej w próbce do początkowej masy próbki [9]

$$W = \frac{m_1 - m_3}{m_1} \cdot 100$$

gdzie:

 m_1 - masa próbki (przed suszeniem), g,

 m_3 - masa próbki po wysuszeniu do stałej masy, g.

WYNIKI I DYSKUSJA

Na wyniki pomiarów rozszerzalności wilgotnościowej duży wpływ na ustalenie się warunków równowagi wilgotności w badanej próbce. Im wilgotność w komorze pomiarowej jest niższa, tym dłuższy czas jest potrzebny do ustalenia się stanu równowagi, to znaczy ustalenia się jednakowej wilgotności w całej objętości próbki.

Pomiary rozszerzalności wilgotnościowej przeprowadzono na kompozytach C/C 1D w temperaturze pokojowej zarówno równolegle, jak i prostopadle do ułożenia włókien w próbce (tab. 1). Z pomiarów tych wynika, że kompozyt C/C 1D w kierunku równoległym do ułożenia włókien wraz ze wzrostem wilgotności kurczy się, a wilgotnościowy współczynnik rozszerzalności liniowej ma wartość ujemną $\alpha_w \cong -2 \cdot 10^{-6}$ [1/%]. Zupeł- nie zachowanie się próbek zanotowano odwrotne w przypadku pomiaru wilgotnościowej rozszerzalności w kierunku prostopadłym do ułożenia włókien. W tym przypadku wilgotnościowy współczynnik rozszerzalności liniowej przyjmuje dużą wartość dodatnią $\alpha_w \cong$ $\cong 7.5 \cdot 10^{-5} [1/\%].$

TABELA 1.	Współczynnik rozszerzalności wilgotnościowej
	dla próbek kompozytów C/C 1D i 2D w zakresie
	wilgotności od 50 do 90%

TABLE 1. Moisture expansion coefficient for 1D and 2D carbon composite samples in moisture range from 50 to 90%

Rodzaj próbki Kind of samples	Napro- mien. Irradia- tion	Nr próbki Nr of samples	Liczba warstw Number of layer	Kierunek Direction	$lpha_{\omega} \cdot 10^{-6}$ [1/%]
1D	-	1	9	II	-1,70
				\perp	7,49
1D	*	2	9	П	-1,40
ID				\perp	7,93
2D	-	3	9	Π	-1,40
2D	*	4	9	Π	-1,32
				\perp	-1,76
2D	-	5	3	Π	-0,99
20				\perp	-1,19
20	*	6	3	Π	-0,37
20				\perp	-1,40
2D	-	7	3	П	-0,43
				\perp	-1,10
2D	-	8	3	П	-0,13
				\perp	-1,99

* Próbki napromieniowane

Z pomiarów parametrów mikrostruktury wynika, że udział objętościowy porów w kompozycie 1D wynosi 15%, a w kompozycie 2D 18%, przy czym pory są ułożone równolegle do włókien. W trakcie nasycania próbek parą wodną średnica porów zwiększa się, powodując rozszerzanie kompozytu w kierunku prostopadłym do ułożenia włókien i kanalikowych porów. W wyniku tego powstające w osnowie naprężenia poprzeczne determinują skurcz materiału w kierunku równoległym do ułożenia włókien. Rozszerzająca się osnowa w kierunku prostopadłym zaciska mechanicznie włókna, które z kolei usztywniają kompozyt w kierunku równoległym, uniemożliwiając jego dalszy skurcz. Przypuszczenia te potwierdzają badania kompozytów 2D, dla których wilgotnościowy współczynnik rozszerzalności liniowej nie różni się znacząco w dwóch wzajemnie do siebie prostopadłych kierunkach, a jego wartość mieści się w granicach od $-0,1 \cdot 10^{-6}$ do $-2 \cdot 10^{-6}$ [1%] (tab. 1). Kierunek równoległy badania pokrywa się z kierunkiem ułożenia włókien w warstwach zewnętrznych.

Nie zauważono wpływu napromieniowania próbek kompozytu C/C na wartość wilgotnościowego współczynnika rozszerzalności liniowej.

W celu sprawdzenia wpływu temperatury na wilgotnościowy współczynnik rozszerzalności kolejne pomiary dla kompozytu 1D równolegle do ułożenia włókien wykonano w temperaturze 40 i 60°C. W tych warunkach wartości wilgotnościowego współczynnika rozszerzalności α_w wynosiły odpowiednio $-2,5 \cdot 10^{-6}$ i $-4,33 \cdot 10^{-6}$ [1%].

Z badań tych wynika, iż istotny wpływ na wartość α_w ma temperatura, w jakiej znajduje się próbka, ze wzrostem temperatury bezwzględna wartość współczynnika α_w rośnie.

Wyniki pomiarów wilgotności próbek i chłonności wody przedstawiono w tabeli 2. Wyniki te wskazują, że kompozyty po napromieniowaniu charakteryzują się dużo niższą chłonnością wody i nieznacznie mniejszą wilgotnością. Zjawisko to może być spowodowane zmianami mikrostruktury kompozytów w wyniku bombardowania ich szybkimi neutronami.

TABELA 2. Wpływ promieniowania na zmianę chłonności i wilgotności próbek kompozytów C/C TABLE 2. Effect of irradiation on humidity and water absorption of C/C composite materials

Rodzaj próbki Kind of samples	Liczba warstw Number of layer	Napro- mien. Irradia- tion	Nr próbki Nr of samples	W, %	X, %
		-	9	5,2	14,6
2D	9	*	10	3,2	9,1
		*	11	3,1	7,1
		*	12	3,5	4,8
1D	9	*	13	3,8	5,1
		-	14	4,0	9,4
		*	15	3,7	8,0
2D	3	-	16	3,6	8,7
		*	17	3,6	8,3
		-	18	0,2	12,1
		*	19	0,1	9,7
		*	20	0,1	5,7
2D	3	*	21	0,1	8,7
		*	22	0,2	6,9
		_	23	0,2	14,1
		*	24	0,2	9,7
		*	25	0,2	6,0

* Próbki napromieniowane

WNIOSKI

- 1. W temperaturze pokojowej dla kompozytów 1D stwierdzono dodatni współczynnik rozszerzalności wilgotnościowej α_w dla pomiarów prostopadle do ułożenia włókien, $\alpha_w \cong 7,5 \cdot 10^{-5}$ [1%]. Dla pomiarów zgodnie z kierunkiem ułożenia włókien wartość ta jest ujemna $\alpha_w \cong -2 \cdot 10^{-6}$ [1%].
- 2. Bezwzględne wartości współczynnika rozszerzalności wilgotnościowej dla kompozytu 1D w kierunku równoległym do włókien wzrastają ze wzrostem temperatury i tak α_w dla T = 60°C wynosi -4,3 · 10⁻⁶ [1/%].
- 3. W kompozytach 2D niezależnie od kierunku badania wartości α_w są ujemne (bliskie 0).
- Nie stwierdzono wpływu napromieniowania neutronami kompozytów C/C na zmianę wartości wilgotnościowego współczynnika rozszerzalności α_w.
- Napromieniowanie neutronami ma istotny wpływ na zmniejszenie chłonności wody przez próbki. Obserwuje się także nieznaczny wpływ napromieniowania na zmniejszenie wilgotności próbek.

Przeprowadzone badania wykazały, że kompozyty 2D, w których jako element wzmacniający zastosowano włókna węglowe wykazują się dużą stabilnością wymiarów geometrycznych w warunkach wilgoci. Zmiany geometryczne towarzyszące wzrostowi wilgotności kompozytów 1D mierzone w kierunku równoległym do ułożenia włókien są również nieznaczne.

Pracę realizowano w ramach projektu badawczego finansowanego przez Komitet Badań Naukowych, grant nr 7T08D 020 14.

LITERATURA

- Engineered Materials Handbook, Composites, ASM International, Metals Park 44073, 1987.
- [2] Composite Materials Series, Fibre Reinforcements for Composite Materials, ed. A.R. Bunsell, Elsevier 1988.
- [3] Gibson R.F., Principles of Composites Material Mechanics, Mc Graw-Hill, New York 1994.
- [4] International Workshop on Advanced Materials for High Precision Detectors, Proceedings, Archamps, Haute-Savoie, France 1994.
- [5] Pampuch R., Błażewicz S., Chłopek J., Kuś W.M., Nowe materiały węglowe w technice i medycynie.
- [6] Donnet J.B., Bansal R.C., Carbon Fibres, Marcel Dekker, Inc., New York 1990.
- [7] Błażewicz S., Piekarczyk J., Chłopek J., Błocki J., Michałowski J., Stodulski M., Zychowski P., Effect of neutron irradiation on mechanical properties of graphite fibres-based composites - artykuł wysłany do druku w czasopiśmie Carbon.
- [8] Polska Norma PN-81/C-89032.

[9] Polska Norma PN-56/C-89053.

Recenzent Jerzy Sobczak