Krzysztof Biesiada¹, Andrzej Olszyna²

Politechnika Warszawska, Wydział Inżynierii Materiałowej, ul. Wołoska 141, 02-507 Warszawa

KOMPOZYTY Ti₃AI-ZrO₂

Przedstawiono wyniki badań nad modyfikacją właściwości Ti₃Al, przede wszystkim zwiększenia odporności materiału na kruche pękanie poprzez wprowadzenie do osnowy cząstek ceramicznych tetragonalnego tlenku cyrkonu (TZ-3Y). Technologia kompozytów Ti₃Al-ZrO₂ składała się z następujących operacji: mieszanie proszków wyjściowych, suszenie ($T = 90^{\circ}$ C), granulowanie, prasowanie jednoosiowe (p = 20 MPa), dogęszczanie izostatyczne (p = 120 MPa) oraz spiekanie swobodne próbek (T = 1400+1550°C, 1 h), w próżni, argonie lub też spiekanie próbek pod ciśnieniem ($T = 1400^{\circ}$ C, 1 h, p = 35 MPa) (rys. 3). Następnie oznaczono właściwości fizyczne kompozytów Ti₃Al+x%ZrO₂, takie jak: gęstość, porowatość, nasiąkliwość metodą hydrostatyczną (rys. rys. 4-6). Przeprowadzono również jakościową analizę fazową kompozytu Ti₃Al+40%wag.ZrO₂, która (rys. 7). Zbadano także własności wytrzymałościowe: twardość HV i odporność na kruche pękanie metodą Vickersa (rys. rys. 9 i 10).

W wyniku spiekania kompozytu Ti₃Al+x%ZrO₂ (x = 0, 10, 20, 30, 40% wag.) pod ciśnieniem (p = 35 MPa) otrzymano materiały o wysokiej twardości 710 HV10 i wysokim współczynniku intensywności naprężeń $K_{lc} = 45$ MPa · m^{1/2} (wartość dla kompozytu Ti₃Al+40% wag.ZrO₂).

Wzrost właściwości wytrzymałościowej kompozytów Ti₃Al+x%ZrO₂ należy przypisać obecności ziaren fazy ceramicznej t-ZrO₂. Grupa mechanizmów odpowiedzialnych za obserwowane wzmocnienie w badanych kompozytach jest bezpośrednio związana z przemianą fazową odmiany tetragonalnej w jednoskośną.

Słowa kluczowe: fazy międzymetaliczne, kompozyty intermetalik-ceramika, odporność na kruche pękanie

Ti₃AI-ZrO₂ COMPOSITES

The study is concerned with the modification of the properties of Ti₃Al, in particular aimed at improving the fracture toughness of this material, by introducing ceramic particles of the tetragonal zirconium oxide (TZ-3Y) into its matrix. The technological operations involved in the production of the Ti₃Al+x%ZrO₂ composite are: mixing the starting powders, drying the mixture at $T = 90^{\circ}$ C, granulating, uniaxial pressing at p = 20 MPa, isostatic compacting at p = 120 MPa, and free sintering at $T = 1400+1550^{\circ}$ C in vacuum or argon for 1 h or hot pressing at $T = 1400^{\circ}$ C, p = 35 MPa for 1 h (Fig. 3). The physical properties of the Ti₃Al+x%ZrO₂ composites thus produced, such as the density, porosity and absorptivity were determined using the hydrostatic method (Figs. 4-6). The phases identified in the Ti₃Al+40wt.%ZrO₂ composite by a qualitative phase analysis were: tetragonal and monoclinic (traces) zirconium oxides and hexagonal Ti₃Al (Fig. 7). The strength properties of the composite, such as the hardness (HV) and fracture toughness, were also examined using the Vickers method (Figs. 9 and 10).

The Ti₃Al+x%ZrO₂ (x = 0, 10, 20, 30, 40 wt.%) composites hot-pressed under a pressure of 35 MPa show a high hardness of 710 HV10 and a high stress intensity factor K_{1c} of 45 MPa \cdot m^{1/2} (the latter value was measured in the Ti₃Al+40wt.%ZrO₂ composite).

The increased values of the strength parameters of the $Ti_3Al+x\%ZrO_2$ composites can be attributed to the presence of the t-ZrO₂ ceramic phase grains. The mechanisms responsible for the hardening observed in the composites can directly be related to the tetragonal-to-monoclinic phase transformation that takes place during the sintering.

Key words: intermetallic phases, intermetallic-ceramic composites, fracture toughness

WPROWADZENIE

Materiały na osnowie faz międzymetalicznych, w tym z układu Ti-Al należą do nowej generacji tworzyw funkcjonalnych i konstrukcyjnych charakteryzujących się unikatowymi właściwościami fizykochemicznymi. Ze względu na małą gęstość oraz stabilność właściwości mechanicznych w szerokim zakresie temperatury materiały te są szczególnie atrakcyjne dla zastosowań w przemyśle energetycznym, motoryzacyjnym oraz lotniczym. Wykorzystywane są jako materiały na łopatki turbin silników odrzutowych i spalinowych oraz zawory

silników spalinowych o dużej mocy, podczas eksploa-

Głównym czynnikiem ograniczającym zastosowanie materiałów na osnowie faz międzymetalicznych jest stosunkowo mała ich plastyczność w temperaturze pokojowej, co czyni je trudno obrabialnymi dostępnymi technologiami [2]. Drugim istotnym ograniczeniem jest odporność na utlenianie w podwyższonej temperaturze [3]. Dotychczasowe wyniki badań stopów na osnowie faz

tacji których występują szczególnie trudne warunki pracy [1]. Głównym czynnikiem ograniczającym zastosowanie

¹ mgr inż., ² prof. dr hab. inż.

międzymetalicznych z różnymi dodatkami zdają się sugerować, że ich właściwości użytkowe w znacznej mierze zależą od mikrostruktury [4].

Szczególną grupę tworzyw stanowią kompozyty na osnowie faz międzymetalicznych z układu Ti-Al umacniane cząstkami ceramicznymi. Wprowadzenie fazy ceramicznej do osnowy - fazy międzymetalicznej może powodować między innymi wzrost odporności na kruche pękanie, na zużycie ścierne, utlenianie i pełzanie.

Celem niniejszej pracy stała się modyfikacja właściwości Ti₃Al poprzez wprowadzenie cząstek ceramicznych tetragonalnego tlenku cyrkonu.

PRACE DOŚWIADCZALNE

Surowcami do badań były proszki: Ti₃Al produkcji Alfa Aesar, Karlsruhe, Niemcy oraz ZrO₂ (TZ-3Y) produkcji TOSOH Corporation, Yamaguchi, Japan. Czystość chemiczna Ti₃Al wynosiła 99,5%. Na rysunku 1 przedstawiono morfologię proszku Ti₃Al oraz rozkład wielkości cząstek.

> Średnia wielkość ziarna Ti₃A d_{śr}= 16,36 [μ m] Odchy lenie standardowe σ =10,29 [μ m]

Rys. 1. Morfologia proszku oraz rozkład wielkości cząstek Ti₃Al Fig. 1. Morphology and the grain size distribution of the Ti₃Al powder

Tetragonalny tlenek cyrkonu stabilizowany tlenkiem itru (ZrO₂+3mol.%Y₂O₃) charakteryzował się następującymi właściwościami: średnia wielkość cząstek 0,141 µm (rys. 2), powierzchnia właściwa 16 m²/g oraz czystość fazowa 100% t-ZrO₂. Z surowców tych wykonano mieszaniny proszkowe Ti₃Al+x%wag.ZrO₂ (x = 0, 10, 20, 30, 40) o założonym składzie drogą homogenizacji w młynku agatowym w alkoholu etylowym.

Średnia wielkość ziarna $ZrO_2 d_{sr}$ = 0,141 [µ m] Odchylenie standardowe σ = 0,044 [µ m]

Rys. 2. Morfologia proszku oraz rozkład wielkości cząstek tlenku cyrkonu Fig. 2. Morphology and the grain size distribution of the zirconium oxide powder

Po wysuszeniu proszki granulowano, a następnie formowano metodą prasowania jednoosiowego pod ciśnieniem 20 MPa i doprasowywano izostatycznie pod ciśnieniem 120 MPa. Prasowane były w formie walców $\phi = 13$ mm, H = 10 mm. Zagęszczanie przeprowadzono dwiema metodami: metodą spiekania swobodnego (T == 1400÷1550°C, 1 h w próżni $p = 10^{-4}$ Pa lub Ar) lub spiekania pod ciśnieniem ($T = 1400^{\circ}$ C, 1 h, p = 35MPa). Technikę wytwarzania materiałów kompozytowych przedstawiono schematycznie na rysunku 3. Spieczone kształtki poddano procesowi szlifowania i polerowania, przy użyciu past diamentowych 3, 1, 1/4 µm, a następnie oznaczono ich właściwości fizyczne, takie jak: gęstość, porowatość, nasiąkliwość metodą ważenia hydrostatycznego z użyciem wagi RADWAG WPS. Zmierzono twardość HV (przy obciążeniu 10 kG) oraz współczynnik intensywności naprężeń K_{Ic} (metodą wgłębnikową przy obciążeniu 10 kG) na kruchościomierzu FV-700B firmy Future-Tech. Skład fazowy badano na dyfraktometrze PHILIPS 1830 o promieniowaniu CuK_{α}. Jakościową analizę fazową przeprowadzono na podstawie zapisów wykonanych w zakresie kątowym 2 Θ 20÷20°

z krokiem 2 Θ - 0,05°, czas zliczania 3 s. Obserwacje mikrostruktury przeprowadzono przy użyciu mikroskopu skaningowego (SEM) HITACHI S3500N i LEO 1500.

Rys. 3. Technika wytwarzania materiałów kompozytowych $Ti_3Al+x\%ZrO_2$ Fig. 3. Flow chart of the fabrication of the $Ti_3Al+x\%ZrO_2$ composites

WYNIKI BADAŃ I ICH OMÓWIENIE

Wyniki badań gęstości pozornej, względnej oraz nasiąkliwości przedstawiono w formie graficznej na rysunkach 4-6. Gęstość pozorna dp kompozytu Ti₃Al+ +x%ZrO₂ zależy zarówno od metody spiekania, jak i od temperatury spiekania. Dla spiekania swobodnego można zaobserwować wzrost gęstości pozornej dp spieków wraz ze wzrostem zawartości tlenku cyrkonu od 3,08 g/cm³ (dla 0% wag. ZrO₂) do 4,22 g/cm³ (dla 40% wag. ZrO₂)

w temperaturze 1400°C oraz od 3,15 g/cm³ (dla 0% wag. ZrO₂) do 4,19 g/cm³ (dla 40% wag. ZrO₂) w temperaturze 1500°C. Gęstość kompozytu Ti₃Al+ +x%ZrO₂ spiekanego w 1550°C oscyluje wokół wartości 4 g/cm³. Najwyższe wartości gęstości pozornej *dp* badanego kompozytu występują podczas spiekania pod ciśnieniem w temperaturze 1400°C i są one bliskie wartościom teoretycznym.

Na podstawie uzyskanych zależności gęstości względnej w funkcji zawartości % wag. ZrO₂ (rys. 5) należy stwierdzić, że najlepsze wartości gęstości uzyskuje się dla kompozytów spiekanych pod ciśnieniem - mieszczą się one w przedziale 97÷99%. Cechują się one znacznie mniejszą porowatością (1÷2%) w stosunku do kompozy-tów Ti₃Al+%wag.ZrO₂ spiekanych swobodnie (5÷25%).

- Rys. 4. Zmiany gęstości pozornej *dp* i teoretycznej *dt* kompozytu Ti₃Al+ +x%ZrO₂ w zależności od udziału (% wag.) ZrO₂ w kompozycie
- Fig. 4. Relative density d_r and theoretical density d_t of a Ti₃Al+x%ZrO₂ composite depending on the (% wt.) ZrO₂ content

- Rys. 5. Zmiany gęstości względnej *dw* kompozytu Ti₃Al+x%ZrO₂ w zależności od udziału (% wag.) ZrO₂ w kompozycie
- Fig. 5. Relative density d_w of a Ti₃Al+x%ZrO₂ composite depending on the (% wt.) ZrO₂ content

Kompozyty Ti₃Al+x%ZrO₂ spiekane pod ciśnieniem charakteryzują się brakiem nasiąkliwości. Natomiast nasiąkliwość kompozytów Ti₃Al+x%ZrO₂ spiekanych swobodnie zmienia się od około 1 do 10% (rys. 6).

- Rys. 6. Zmiany nasiąkliwości kompozytu Ti₃Al+x%ZrO₂ w zależności od udziału (% wag.) ZrO₂ w kompozycie
- Fig. 6. Absorptivity of the $Ti_3Al+x\%ZrO_2$ composite as a function of the (% wt.) ZrO_2 content

Przeprowadzona jakościowa analiza fazowa kompozytu z zawartością 40% wag. ZrO₂ wykazała występowanie następujących faz: tetragonalny, jednoskośny tlenek cyrkonu oraz heksagonalny Ti₃Al.

Udział fazy jednoskośnej V_j generowanej podczas spiekania można określić według zależności

$$V_j = \frac{1,603 \cdot I/111/_j}{1,603 \cdot I/111/_j + I/111/_T} \cdot 100\%$$

gdzie: $I/111/_{j}$ jest intensywnością refleksu /111/ fazy jednoskośnej, zaś $I/111/_{T}$ jest intensywnością refleksu /111/ fazy tetragonalnej.

Obliczona wartość udziału objętościowego jednoskośnego ZrO₂ wynosi jedynie 6%.

Rys. 7. Analiza fazowa kompozytu Ti₃Al+40%wag.ZrO₂ spiekanego pod ciśnieniem (1400°C/1 h, p = 35 MPa)

Fig. 7. Phase analysis of the Ti₃Al+40%ZrO₂ composite hot pressed at T = 1400°C for 1 hour, p = 35 MPa

Typową mikrostrukturę kompozytu ziarnistego $Ti_3Al+40\%$ wag.ZrO₂ spiekanego pod ciśnieniem przedstawiono na rysunku 8. Ciemna faza to osnowa (Ti₃Al), natomiast jasna faza to ziarna ZrO₂. Homogenicznie rozmieszczone w objętości kompozytu ziarna ZrO₂ posiadają nieregularny kształt oraz średnią wielkość 65 µm. Wskazuje to na silną tendencję tlenku cyrkonu do aglomeracji.

Badania właściwości mechanicznych kompozytów ograniczono do pomiarów twardości (rys. 9) i współczynnika intensywności naprężeń K_{Ic} (rys. 10).

Z przedstawionych wyników pomiaru twardości dla kompozytu Ti₃Al+x%ZrO₂ spiekanego pod ciśnieniem można stwierdzić, że wprowadzanie ZrO₂ do osnowy Ti₃Al powoduje wzrost twardości do 710 HV10 (dla 20% wag. ZrO₂), natomiast dalszy wzrost udziału fazy ceramicznej nieznacznie obniża ten parametr do 664 HV10 (dla 40% wag. ZrO₂).

Odporność na kruche pękanie K_{Ic} dla kompozytu Ti₃Al+x%ZrO₂ spiekanego pod ciśnieniem wzrasta wraz ze wzrostem udziału ZrO₂ (dla czystego Ti₃Al wartość współczynnika K_{Ic} wynosi 18 MPa · m^{1/2}, natomiast po wprowadzeniu do osnowy 40% wag. ZrO₂ wartość K_{Ic}

wynosi 45 MPa \cdot m^{1/2}). Zatem jest wzrost K_{Ic} o 150% w wyniku wprowadzenia 40% wag. (32% obj.) ZrO₂ do osnowy.

Rys. 8. Typowe mikrostruktury kompozytu ziarnistego Ti₃Al+40%wag. ZrO₂ spiekanego pod ciśnieniem 1400°C/1 h, p = 35 MPa

Fig. 8. Typical microstructures of the grular Ti₃Al+40%wt.ZrO₂ composite hot - pressed at T = 1400°C for 1 hour, p = 35 MPa

Rys. 9. Wpływ udziału tlenku cyrkonu na twardość kompozytu Ti₃Al+ +x%ZrO₂ spiekanego pod ciśnieniem (1400°C/1 h, *p* = 35 MPa)

Fig. 9. Effect of the ZrO_2 admixture on the hardness of a hot-pressed $Ti_3Al+x\%ZrO_2$ composite (1400°C/1 h, p = 35 MPa.)

186

- Rys. 10. Wpływ udziału tlenku cyrkonu na współczynnik intensywności naprężeń K_{Ic} kompozytu Ti₃Al+%ZrO₂ spiekanego pod ciśnieniem (1400°C/1 h, p = 35 MPa)
- Fig. 10. Effect of the ZrO₂ admixture on the stress intensity factor K_{lc} in hot pressed Ti₃Al+x%ZrO₂ composite (1400°C/1 h, p = 35 MPa)

PODSUMOWANIE

Przeprowadzone wstępne wyniki badań nad modyfikacją właściwości Ti₃Al poprzez wprowadzenie do osnowy cząstek ceramicznych tetragonalnego tlenku cyrkonu (TZ-3Y) wykazały, że najwyższe wartości gęstości pozornej *dp* badanych kompozytów otrzymano podczas spiekania pod ciśnieniem 35 MPa w temperaturze 1400°C i są one bliskie wartościom teoretycznym. Materiały te cechują się również znacznie mniejszą porowatością i nasiąkliwością w stosunku do kompozytów Ti₃Al+x%ZrO₂ spiekanych swobodnie.

Wprowadzanie ZrO₂ do osnowy Ti₃Al powoduje wzrost twardości kompozytów do 710 HV10 dla Ti₃Al+ +20%wag.ZrO₂ i dalsze zwiększanie udziału fazy ceramicznej nieznacznie zmniejsza twardość. Współczynnik intensywności naprężeń K_{Ic} wzrasta z 18 MPa · m^{1/2} dla 0% wag. ZrO₂ do 45 MPa · m^{1/2} dla Ti₃Al+ +40%wag.ZrO₂. Jest to spowodowane działaniem mechanizmu transformacji fazowej tetragonalnego tlenku cyrkonu do jednoskośnej oraz wzrostem zawartości ZrO₂.

Wzrost właściwości wytrzymałościowej kompozytów Ti₃Al-ZrO₂ należy przypisać obecności ziaren fazy ceramicznej t - ZrO₂. Grupa mechanizmów odpowiedzialnych za obserwowane wzmocnienie w badanych kompozytach jest bezpośrednio związana z przemianą fazową odmiany tetragonalnej w jednoskośną.

Praca była finansowana z grantu PBZ/KBN/041/T08/02-09.

LITERATURA

- [1] Varin R.A., Structural and functional intermetallics an overview, Inżynieria Materiałowa 2001, 1, 11-18.
- [2] Bystrzycki J., Varin R.A., Bojar Z., Postępy w badaniach stopów na bazie uporządkowanych faz międzymetalicznych z udziałem aluminium, Inżynieria Materiałowa 1996, 5, 137.
- [3] Bystrzycki J., Garbacz H., Przetakiewicz W., Kurzydłowski K.J., Prace badawcze w obszarze faz międzymetalicznych, Inżynieria Materiałowa 2001,1, 8.
- [4] Rachmel A., Quadakkers W., Schutze M., Materials and Corrosion 1995, 8, 271.

Recenzent Stanisław Wierzbiński