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CLOSED-FORM SOLUTION FOR ELASTIC-PLASTIC ANALYSIS OF SELECTED 

FIBER METAL LAMINATES DURING LOADING-UNLOADING CYCLE 

Fiber reinforced polymer composites and aluminum alloys nowadays constitute the most dominant materials applied in 

the aerospace industry. This paper gives the theoretical background and provides both analytical and numerical calculations 

for analysis of the elastic-plastic behavior of a selected fiber metal laminate. The work introduces the closed-form solution for 

a multi-layered structure subjected to a unidirectional loading/unloading cycle, and explains the process of stress and strains 

development. GLARE® plates, which are exposed to a tensile load, can generate even higher stress in the aluminum layers at 

unloading. Moreover, delamination and buckling of the external layers can be expected. The paper gives a detailed theoretical 

framework for this behavior based on the plasticity theory, provides numerical calculations, and compares them with the 

FEM and experimental results.   

Keywords: elastic-plastic behavior, thin-walled plates, composite-reinforced metal structures, theory of orthotropic materi-

als, GLARE® 

SPRĘŻYSTO-PLASTYCZNA ANALIZA ZACHOWANIA LAMINATU KOMPOZYTOWO-METALOWEGO 
PODCZAS OBCIĄŻANIA ORAZ ODCIĄŻANIA 

Polimerowe kompozyty włókniste oraz stopy aluminium stanowią obecnie jedne z najczęściej stosowanych materiałów  

w przemyśle lotniczym. Artykuł przybliża podstawy teoretyczne oraz prezentuje wyniki obliczeń numerycznych dla analizy 

sprężysto-plastycznej wybranego laminatu kompozytowo-metalowego. Artykuł podaje szczegółowe rozwiązanie analityczna 

dla wielowarstwowej struktury poddanej cyklowi obciążenia/odciążenia oraz opisuje procesy związane z narastaniem naprę-

żeń i odkształceń. Zauważono, że w płytach GLARE® poddanych jednoosiowemu rozciąganiu istnieje możliwość wystąpienia 

maksymalnych obciążeń w warstwach metalu podczas odciążania. Można także oczekiwać rozwarstwienia oraz wyboczenia 

zewnętrznych warstw aluminium. Artykuł, stosując teorię plastyczności, podaje rozwiązanie analityczne konieczne do wyja-

śnienia zachowania opisywanej struktury, prezentuje rezultaty obliczeń oraz porównuje je z wynikami analiz numerycznych 

oraz prac doświadczalnych.  

Słowa kluczowe: model elastoplastyczny materiału, teoria płyt cienkich, struktury kompozytowo-metalowe, własności ortotro-

powe, GLARE®  

INTRODUCTION  
Thin-walled plates and cylinders subjected to mecha- 

nical loading are common structural elements used in 

various industries. For centuries, multi-layered steel 

tubes for example, have played a major role in a wide 

range of applications including barrel cannons and pres-

sure or vacuum chambers. With the increasing use of 

composite materials in various sectors of industry, the 

need for multi-layered composite structures has become 

more evident. However, due to the complex mechanical 

behavior of such as structures, which, for example, 

exhibit complex modes of deformation, their theoretical 

analysis requires a slightly different approach. The 

fundamental theoretical background for analysing ani-

sotropic bodies was provided by Lakhnitskii [1], and his 

work has been referenced in a large number of text-

books dealing with composites [2-5]. Some specific 

cases of balanced composites have been studied by 

Niezgoda and Klasztorny [6], followed by Lewiński 

and Wilczyński [7], who derived stress-strain relations 

and material constants for diagonal laminates. Further-

more, hybrid structures like fiber reinforced metal 

(FRM), or fiber metal laminates (FML) are of interest, 

[8, 9]. Nowak and Schmidt [10] showed, for example, 

the mechanism of internal load distribution between 

thin-walled composite reinforcement and a steel liner 

working in its elastic-plastic regime.  

The potential of composite materials for modern 

lightweight applications has been known for many 

years, especially in the aerospace industry. For exam-

ple, hybrid materials such as composite metal lami-
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nates, offer great potential to substitute “pure” metals. 

GLARE is composed of alternate layers of aluminum 

and glass fiber-reinforced epoxy (GFRP). Recently, 

GLARE has been successfully adopted for large parts 

of the Airbus A380 fuselage, and is also considered as 

a fan-blade containment material for aircraft turbines. 

Consequently, detailed understanding and modeling the 

material response of the composite-metal structure is 

very important. While the global mechanical response 

of this material has been extensively experimentally 

characterized [11, 12], attempts to explain its deforma-

tion and buckling modes are limited. In this context, the 

work done by Bienias et al. [13] has to be mentioned. 

These researchers analyzed the post-yield behavior of 

fiber metal laminates composed of aluminum and car-

bon fibers having a cross-ply stacking sequence, and 

they noticed that such systems could exhibit delamina-

tion and buckling of the external metal layers during 

unloading.  

The work described in this paper tries to explain the 

mechanical phenomena observed empirically. The  

paper is formatted as follows: Section Theoretical 

Background presents the theoretical background and the 

proposed analytical calculation approach method giving 

insight into the material models and constitutive rela-

tions. Section Analytical Calculation Model covers the 

numerical example, while the concluding remarks are 

gathered in the last section of the work.   

THEORETICAL BACKGROUND 

Classical Lamination Theory 

In the conventional approach to lamination [2-5], the 

stress-strain relation is characterized by an equivalent 

generalized force (N, M) - generalized strain (ε0, κ) 

system: 
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where: N, M are vectors of forces and moments, respec-

tively; ε0, κ  are vectors of strains due to the forces and 

moments, respectively; and A, D and B are called the 

tension stiffness, bending stiffness and coupling stiffness 

matrices respectively.  

These matrices are calculated as follows:  
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where [Ki] is the stiffness matrix of a single i-th lamina, 

which is spaced from the neutral axis of the laminate by 

distance z, whereas ti is the total thickness of the ply.   

Normally, the composite may consist of several 

plies, then the global stiffness matrix [KG] for the whole 

structure is calculated with respect to the thickness of 

individual plies: 
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where: ti - thickness of i-th ply, t - total thickness of all 

N plies. 

If required, the equivalent mechanical properties of 

a multi-layer composite may be calculated by simple 

operations performed on the components of the compli-

ance matrix [SG], which is the inverse of the global 

stiffness matrix, [KG]
 −1

: 
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The matrix [B], appearing in Eq. (1), plays an im-

portant role in the lamination theory because it causes 

complex interaction between the in-plane loads and the 

bending effects. However, composite structures are 

typically designed in such a way that all the compo-

nents of [B] are zero, therefore tension-bending cou-

pling does not exist. In this case, coupling factors η and 

µ in the corresponding directions also are zeroed.  

ANALYTICAL CALCULATION MODEL 

The classical lamination theory allows transforma-

tion of the stiffness of all plies into the global stiffness 

matrix, and the method works perfectly within the elas-

tic range. However, in the case of elastic-plastic behav-

ior this technique does not offer a simple solution. For 

this reason, separating the plies working in the elastic 

range only (composite), and the layers exhibiting elas-

tic-plastic properties (metal) is proposed. In addition, 

the simple deformation theory of Hencky and Ilyushin 

will be used to describe the behavior of the metal.   

Let us consider a symmetrical and balanced struc-

ture, subjected to an in-plane load and having n plies, 

which can be grouped into metal (1) and composite (2) 

materials, as shown schematically in Figure 1.  

On the basis of the equilibrium relation, it is possi-

ble to state: 
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where f is the distributed force in respective directions 

[N/mm], ei - total thickness [mm] of the metal and 

composite materials, σ, τ are the mean stresses within 

the materials in respective directions [MPa]. 



Closed-form solution for elastic-plastic analysis of selected fiber metal laminates during loading-unloading cycle 

Composites Theory and Practice  17: 2 (2017)  All rights reserved 

99

 
Fig. 1. Geometrical model of the analyzed structure 

Rys. 1. Model geometryczny analizowanej struktury 

The constitutive equations for an orthotropic mate-

rial may be found in many textbooks [2-5], and the 

compliance form of the generalized Hook Law for flat 

and symmetrical composite layouts can be given as: 
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where ε  and γ  are the strains; E, G are the values of the 

Young and Kirchhoff modules, respectively; ν is  Pois-

son's ratio, while η and µ are the coupling factors in 

corresponding directions. Initial strains ε
0 may consist 

of thermal strain components or/and any residual 

strains.   

When considering the whole hybrid structure, one 

has to assume a perfect bonding between the materials: 
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Assuming further the cross-ply layout of the com-

posite (ηXY = µXY = ηX = µY = 0), and introducing (6) 

into (7), it is possible to state: 
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(8)  

Relations (5) and (8) constitute a simple system of 6 

equations, with the same number of unknowns (σ1X, 

σ1Y, τ1XY, σ2X, σ2Y, τ1XY): 
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(9)  

Equation (9) describes the general behavior of the 

cross-ply composite structure subjected to  in-plane 

load and initial strains.  

In the case of the analyzed GLARE material, which 

is exposed to  unidirectional tension only (no transverse 

load or shear, no residual/thermal strains), and introduc-

ing equivalent properties for all the fiber reinforced 

plies, the comprehensive equation (9) can be signifi-

cantly simplified, and the closed-form solution could be 

proposed:  
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and:  
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where index “1” and the “prime” sign refer to the metal, 

and index “2” and the  “dash” sign refer to the compos-

ite equivalent proprieties, respectively. 

Knowing the equivalent stress within the composite, 

σ2, the stresses in the particular layers σi can be found 

by: 
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EQUIVALENT MATERIAL PROPERTIES 

In order to describe the material properties of alumi-

num, which change during the progress of plastic de-

formation, one can take advantage of the simple defor-

mation theory provided by Hencky and Ilyushin. They 

postulated that for “nearly” proportional loads, the total 

strain (the sum of elastic and plastic components) is 

given as a function of total stress (Fig. 2). 
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Fig. 2. Elastic-plastic behavior of T3 aluminum 

Rys. 2. Wykres rozciągania aluminium T3 w zakresie elastoplastycznym 

In this case the calculation model, as described by 

equation (10), can also be used in the elastic-plastic 

regime, if the elastic properties of the metal are 

replaced by their equivalent forms:  

                  

( )







−−=

+
=

+
=

υυ

εσ

σ

εε

σ

21
'

1
2

1
'

'

E

E

E

E
E

PLMises

Mises

PLEL

Mises

     (12) 

where E’ is the secant value of Young's modulus, and 

ν’ is the corresponding Poisson's ratio. E, v - aluminum 

properties within the elastic limit (E = 70GPa, v = 0.32) 

In the absence of  a shear load, the equivalent (von 

Mises) stress and equivalent plastic strains are defined 

as follow: 
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According to the deformation theory of Hencky and 

Ilyushin, the total strains of the material working in the 

elastic-plastic regime can be described as: 
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If the elastic-plastic properties (E’ and v’) are  

replaced by metal properties within the elastic limit (E, 

v), the elastic strain components may be calculated in  

a very similar manner: 
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Naturally, the total strain is the sum of elastic and 

plastic strains, in respective directions. Therefore: 
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Calculating  the equivalent properties of the com-

posite structure is more straightforward, and follows the 

procedure described by equations (3) and (4).  

CALCULATION PROCEDURE  

Analysis within the elastic limit can be managed 

with the help of equation (10), if the elastic proper-

ties of the metal are simply used (E’= E, v’= v). The 

plastic regime requires, however, the strain control. 

In this case a test point (σMises, ε
PL
) on the stress - 

plastic strain curve (Fig. 2), needs to be selected, and 

corresponding equivalent properties of the metal 

should be calculated according to Eq. (12). Next, the 

distributed tensile force, fX, matching the specified 

test point, may be derived from: 
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Knowing the tensile force, the stress components for 

the metal and composite layers can be calculated from 

Eq. (10), and for the specific plies - from Eq. (11). It 

must also be noted that the tensile force required to 

reach the elastic limit of the multi-layered structure may 

be found, if one introduces σMises = Y0 (which is about 

337 MPa for T3 aluminum) into  Eq. (18).   

When releasing the tensile load, the structure will try 

to return to the initial shape. However, the aluminum 

layers are hardened already during loading. Therefore, 

in order to properly describe the unloading step, the 

original strain-stress curve needs to be corrected.  

Assuming the isotropic hardening principle, the yield 

surface will keep the same shape, but should expand 

with increasing stress. Practically it means, that the 

“true stress-plastic strain” curve, as shown in Figure 2, 

has to be shifted vertically, from the original yield point 

Y0, to the maximum von Mises stress reached at load-

ing, Y1.  

In practice, the unloading procedure may be treated 

as a separate step - compression of the stress-free sam-
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ple having the original geometry, but hardened material. 

The final state could be characterized by the algebraic 

sum of the results (total stresses and strains) produced 

in two steps: (I) tensile of the virgin material, and (II) 

compression of the already hardened material. How-

ever, it is important to note that the von Mises yield 

surface, which is needed to describe the stress-strain 

behavior (Fig. 2), takes now the form:   
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and: 
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where σ'i is the actual stress in respective directions; σi 

- is the compressive stress calculated in the “unloading” 

step, and αi is the tensile stress at the end of the loading 

step (often called the backstress).  

More details on the calculation procedure can be 

found in [14, 15]. 

NUMERICAL EXAMPLE 

The analyzed geometry of the GLARE plate con-

sisted 3 layers of aluminum, which were separated by 

cross-ply (0/90) layers of carbon fiber (CF) composite 

(Fig. 3). The material properties of a single fiber-

reinforced layer could be estimated as: ET=134 GPa,  

EL = 9.7 GPa, νTL = 0.29, νLT = 0.02, and GTL = 3.5 GPa. 

It corresponds to the equivalent properties for the whole 

cross-ply composite structure as: EX = EY = 77.2 GPa, 

νXY = νYX = 0.04, and GXY = 3.5 GPa. 

 

 

Fig. 3. Geometrical model of  analyzed FML sample  

Rys. 3. Model geometryczny analizowanej próbki FML 

The test sample was subjected to tension in the X  

direction, with force FX = 33.5KN, and next unloaded.    

The numerical calculations were performed using 

the provided analytical model, as described in Section 

Theoretical Background, as well as by the finite  

element method, with the help of the ABAQUS simula-

tion package [16]. Both approaches gave very consis-

tent results. For example, at the end of the loading 

phase, the analytical approach predicted stresses in the 

load direction: σX = 2318 MPa for CF 0, and σX =  

= 162.7 MPa for CF 90, while the FEM software  

returned 2317 and 162.3 MPa, respectively. More inter-

esting is the situation in the Y direction because due to 

orientation of the CF 90 plies, these layers exhibit com-

pression (−274 MPa), while the CF0 plies show negli-

gible tension (26 MPa) - at the end of the loading phase.  

The situation is much more complex for aluminum,  

especially during the unloading phase. As shown in 

Figure 4, at the end of the loading phase the stress in the 

X direction reaches 431 MPa, which corresponds to  

380 MPa of the equivalent von Mises stress. At this 

stage, the total strain in the X direction of 1.72% is 

comprised of the elastic component (0.52%), and sub-

stantial plastic strain (1.20%).  
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PL unload

Y
0
=337

 

Fig. 4. Stresses vs. strains in X direction for aluminum during loading 

and unloading phases.  Top picture presents stress in X direction, 

while bottom shows von Mises stress  

Rys. 4. Naprężenia jako funkcja odkształceń w osi wzdłużnej dla alumi-

nium podczas obciążania i odciążania. Górna krzywa opisuje na-

prężenia w kierunku X, a dolna naprężenia ekwiwalentne Misesa 

During unloading, the stress in the X direction and 

von Mises stress are reduced first.  Nevertheless, due to 

the hardening achieved as a result  of plastic flow dur-

ing loading, the stress in the X direction can elastically 

progress even to negative values, unless the von Mises 

stress reaches the same plastic state of 380 MPa. Start-

ing from this point, further unloading is managed using 

plastic deformations until force balance conditions for 

the aluminum and composite layers are met. Thus, in 

the second phase, the elastic strain was reduced by 

1.05% (reaching −0.53%), while the plastic strain was 

reduced by −0.20% (reaching 1.00%). At the end of the 
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process the von Mises stress (385 MPa) is a bit higher 

than at the start of loading, aluminum is exposed to 

significant compression (−389 MPa), and there are still 

some total residual strains in the X direction at the level 

of 0.47%. Naturally, since all the layers are tied, the 

same strain applies to composite plies, leading to com-

pression of the aluminum and tension in the composite. 

While aluminum is exposed to a negative stress of −389 

MPa at the end of the unloading process, the corre-

sponding reaction force is mainly managed by two plies 

of CF 0, which, due to a much lower total thickness, are 

subjected to a positive stress of 628 MPa. The remain-

ing plastic strain in aluminum (1.00%), complex mis-

matching in stresses (compression in aluminum and 

tension in the composite), as well as unbalanced force 

conditions for the external layers, are the main reasons 

for the phenomena observed experimentally by Bienias 

et al. 

The main results are presented in Table 1. 

 
TABLE 1. Summary of results 
TABELA 1. Podsumowania wyników  

  Analytical FEM 

  εX
EL 

[%] 

εX
PL 

[%] 

σX 

[MPa] 

σMises 

[MPa] 

σMises

 

[MPa] 

L
O
A
D
 Alum 0.52 1.20 431 380.4 380.2 

CF_0 
1.72 

2318 2305 2305 

CF90 163 382 407 

U
N
L
O
A
D
 

Alum −1.05 -0.20 −820 756  

CF_0 
−1.26 

−1690 1683 

CF90 −117 351 

E
N
D
 

Alum −0.53 1.00 −389 384.6 385.3 

CF_0 
0.47 

628 622 619 

CF90 44 44 46 

 

The calculated results also match the measured ones. 

The stress in the X direction at the end of loading  

(431 MPa for AL, 2138 MPa for CF0 and 163 MPa for 

CF90), averaged over the thickness reached the level of 

865.0 MPa, which  corresponds very well to the meas-

ured data of 865.72 MPa, as reported by Bienias.  

A small difference is seen in the strain results: 1.72% as 

calculated vs. 1.84% as measured. This minor deviation 

(6.5%) can be, however, attributed to the differences in 

material properties (assumed, and real ones), and the 

small amount of  thermal strains which could exist after 

the manufacturing process.  

CONCLUSIONS 

The paper presented the structured approach for the 

analysis of fiber metal laminates working in the elastic-

plastic regime. The analytical model combining the 

classical lamination theory with the deformation theory 

by Hencky-Ilyushin was introduced first, then the 

closed-form solution was proposed. The numerical 

calculation case which was managed provided deeper 

insight into the mechanical phenomena of FML struc-

tures, and allowed the author to explain the complex 

interaction between the aluminum and composite  

layers. It was concluded that if plastic strains appear 

during loading, one may expect significant stresses at 

the end of unloading in FML structures. Thus, both the 

design and exploitation of GLARE plates should be 

managed  keeping in mind the mechanical phenomena 

studied in this article.       
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