

Piotr Olesik

Faculty of Materials Engineering and Industrial Digitalization, Silesian University of Technology, Katowice, Poland
Correspondence: piotr.olesik@polsl.pl

Received (Otrzymano) 17.11.2025

Published on-line (Opublikowano) 31.12.2025

HDPE COMPOSITE WITH HYBRID REINFORCEMENT AS WEAR RESISTANT MATERIAL FOR 3D PRINTING

<https://doi.org/10.62753/ctp.2025.05.4.4>

This work examines the influence of fused deposition modelling (FDM) and hybrid reinforcement with glassy carbon (GC) and nano alumina ($n\text{-Al}_2\text{O}_3$) on the wear behaviour of HDPE composites. The composites containing only $n\text{-Al}_2\text{O}_3$ showed the highest wear and unstable friction due to dominant abrasive mechanisms. The GC-filled HDPE exhibited reduced wear, associated with carbon transfer film formation. The hybrid GC/ $n\text{-Al}_2\text{O}_3$ composite demonstrated a synergistic effect, combining surface hardening with self-lubrication, which markedly reduced wear and stabilized the coefficient of friction. Although the FDM-printed samples had higher wear rates than the compression-moulded ones, their coefficients of friction remained similar. The results highlight that hybrid reinforcement can effectively suppress abrasive wear and improve the tribological stability of FDM-processed HDPE composites.

Keywords: wear resistance, HDPE, glassy carbon, FDM, 3D printing

INTRODUCTION

High-density polyethylene (HDPE) is widely recognized as a low-friction and wear-resistant polymer, which makes it a popular choice for low-bearing applications and biomedical components such as acetabular cups or tibial inserts [1–3]. However, the relatively low mechanical strength and hardness of neat HDPE remain limiting factors for its broader engineering use [3]. The most common approach to overcoming these limitations is the reinforcement of HDPE with micro- or nanoscale fillers, which improve its load-bearing capacity and tribological properties [2, 4].

Possible reinforcing agents include ceramic particles such as alumina (Al_2O_3), titanium dioxide (TiO_2), or zirconia (ZrO_2) [5, 6], as well as carbon-based fillers such as carbon nanotubes (CNTs),

graphene, graphene oxide, carbon black, or graphite [2, 4, 7, 8]. The addition of these fillers can significantly influence the wear mechanism and the overall tribological behaviour of the composite material. Typically, ceramic reinforcements tend to increase the hardness and stiffness of the matrix but may also promote abrasive wear at higher contact pressures [1, 9, 10]. This phenomena can result in increased wear volume or wear mass [5]. In contrast, carbon fillers often act as solid lubricants, forming a transfer film at the sliding interface, which reduces friction and the wear rate [8, 11–13]. Additionally, the introduction of carbon nanofillers can increase matrix stiffness, which prevents cracking of the polymer matrix and reduces plastic deformation. Hybrid reinforcements (or heterophase reinforcement) combining both

ceramic and carbon components have also been explored to achieve a balance between hardness and lubricity, leading to synergistic improvements in tribological performance [2, 11, 12].

Despite extensive research on conventional processing routes (such as injection moulding and compression moulding) studies focusing on HDPE composites tailored for fused deposition modelling (FDM) remain uninvestigated. The use of 3D printing in wear resistance components is an emerging topic in the field of HDPE composites. Nevertheless, there is lack of research focused on hybrid reinforcement in such 3D printed composites [3, 7].

This study investigates the effect of 3D printing via fused deposition modelling (FDM) on the tribological behaviour of high-density polyethylene (HDPE) composites. The use of hybrid reinforcement combining glassy carbon (GC) and alumina (Al_2O_3) was evaluated to determine its influence on the wear mechanisms, wear rate and coefficient of friction (CoF).

MATERIALS AND METHODS

To prepare the composite filaments, as the matrix, HDPE HIVOREX 2600J (Lotte Chemical, Seoul, South Korea) was used. The reinforcement

particles were micrometric glassy carbon powder (GC) prepared according to previous work [14] and nano alumina ($\text{n-Al}_2\text{O}_3$, product number: 544833, Merck KGaA, Darmstadt, Germany) with a declared particle size <50 nm.

The granulates for extrusion were prepared by introducing powder reinforcement onto the surface of the HDPE granules. First, the mixture of polymer and powder additives was mixed with ethyl alcohol 96% (Warchem, Warszawa, Poland). Later, the mixture was treated with ultrasonic waves for 15 minutes in an ultrasonic bath. In next step, the mixture was poured into a polypropylene container and left to dry at 50°C until the excess of alcohol evaporated. After approximately 2 hours, the mixture was mechanically mixed for 1 minute, followed by further drying for approximately 12 hours. The composite filaments were extruded utilising a ZAMAK DTR EHP-2x16S twin screw extruder (Zamak Mercator Sp. z o.o., Skawina, Poland). The nozzle temperature during extrusion was 180°C and the obtained filaments were ~ 1.6 mm in diameter. The composition of the obtained filament is presented in Table 1. The amount of powder reinforcement needed to obtain the desired GC content was investigated in another work [14]. The amount of nano alumina was fixed to reflect the content of GC, which is presented in Table 1.

TABLE 1. Composite composition

	Volume content [%]		
	HDPE	μGC	$\text{n-Al}_2\text{O}_3$
HDPE	100.0	-	-
μGC	99.0	1.0	-
$\text{n-Al}_2\text{O}_3$	99.0	-	1.0
$\mu\text{GC}/\text{n-Al}_2\text{O}_3$	99.0	0.5	0.5

The prepared filaments were used to prepare samples via 3D printing with the FDM method and hot pressing. Hot pressing was performed in a steel mould at 150°C under 30 MPa pressure. The diameter of the samples was 30.0 mm. The 3D

printing process was performed at Original Prusa Mini (Prusa Research a.s., Prague, Czech Republic) with a BondTech dual gear extruder upgrade (BondTech AB, Värnamo, Sweden). The printing parameters are presented in Table 2.

TABLE 2. 3D printing parameters

Parameter	Value
Nozzle diameter	0.4 mm
Nozzle temperature	200.0 °C
Bed temperature	85.0 °C
Bed surface	PE tape
Print speed	30.0 mm/s
Feed rate	1.1 – 1.5
Layer height	0.1 mm
Extrusion width	0.45
Cooling rate (Cooling fan speed)	15.0% (40 RPM)
Retraction distance	0.0 mm
Infill ratio	100%
Perimeter count	2.0

The tribological tests to ascertain the coefficient of friction (COF) and mass wear of the materials were conducted in ambient conditions under technically dry friction conditions using a pin-on-block tribotester set up (Fig. 1). The samples were cylindrical in shape, 20.0 mm in diameter and height of 2.0 mm for the 3D printed samples and 7.0 mm for the hot-pressed samples. The printed paths were 45° to the sliding movement. This angle was chosen as the best performing in accordance with other studies [15]. In the test, the normal force of 10.0 N was used and the sliding speed was 0.1 m/s. The test was conducted over a sliding distance of 1000.0 meters. The counterpart material was a 6 mm alumina ball. During the tribological tests, the friction load was measured continuously by means of a strain gauge connected with an analogue-digital converter and recorder. The obtained data was employed to calculate the coefficient of friction. The samples were weighed before and after the test. The mass wear rate was calculated with Eq. 1. The wear track of the investigated composites was analysed utilising a Hitachi S-3400N scanning electron microscope (SEM).

$$W = \frac{m_0 - m_1}{m_0} * 100 \quad (1)$$

where:

W – mass wear rate [%], m₀ – sample mass before test [g], m₁ – sample mass after test [g]

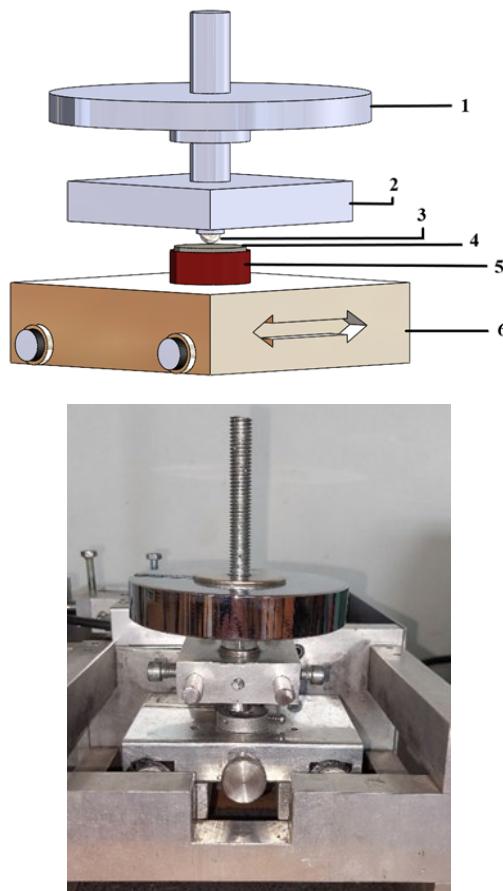


Fig. 1. Diagram of tribotester set up (left), 1 – load, 2 – strain gauge holder, 3 – counterpart (ball), 4 – sample, 5 – sample holder, 6 – moveable plate, and actual set up photo (right)

RESULTS

The samples after the tribological tests are shown in Figure 2. The composites containing only nano alumina (n-Al₂O₃) particles exhibit the

most pronounced volumetric wear, regardless of the manufacturing technique, which suggests an abrasive wear mechanism. The hybrid composite (GC/n-Al₂O₃) shows visibly less wear than the composite with nano alumina. Nonetheless, the 3D printed sample displays a wear track with

rough edges. These observations point to a synergistic effect between the reinforcements that reduces the overall wear rate, and also indicate that the FDM processing of HDPE can affect wear resistance. This trend is supported by the results presented in Table 3.

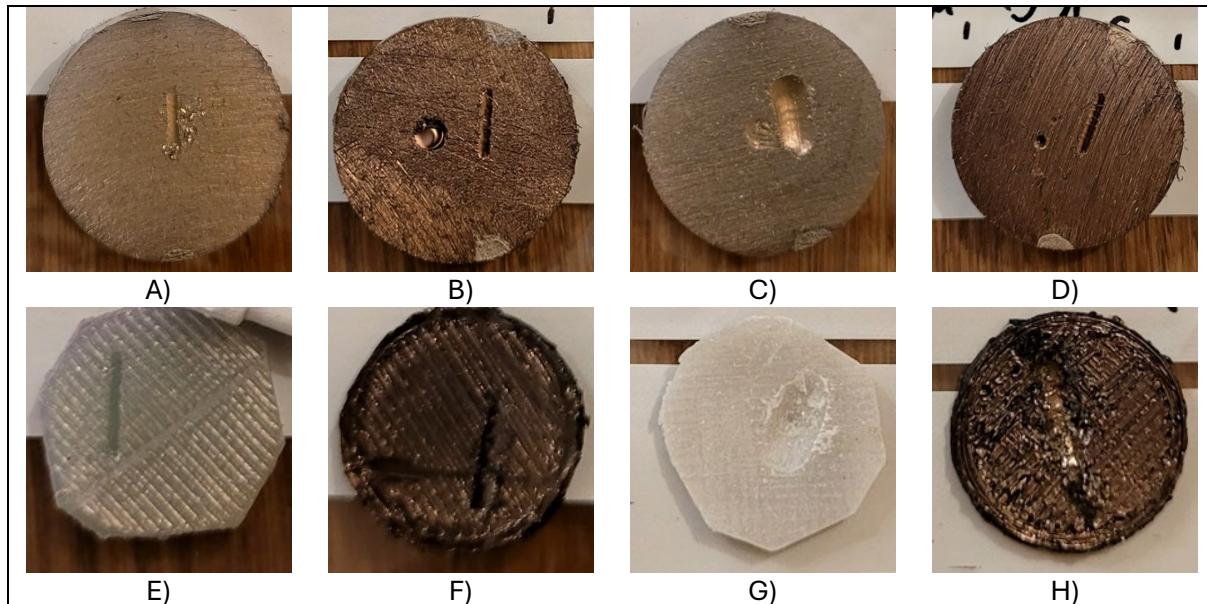


Fig. 2. Samples after tribology tests. A - D compression moulded composites, E - H 3D printed : A) and E) HDPE, B) and F) μ GC, C) and G) n-Al₂O₃, D) and H) μ GC/n-Al₂O₃

The highest CoF and the greatest mass wear rate were recorded for the n-Al₂O₃ composites. In addition, the 3D-printed samples show higher wear rates than their compression-moulded counterparts, which may be attributed to weak interlayer bonding in the printed parts. Poor interlayer strength of FDM parts is a known issue [16], and especially in abrasive type of wear, fragments of layers might delaminate during friction. However, in this case the manufacturing technique does not impact the CoF of the composites. Also, the usage of hybrid reinforcement not only reduces wear in comparison to the pure n-Al₂O₃ composite, but also stabilizes the coefficient of friction. This effect is confirmed by the CoF curves presented in Figure 3. The neat HDPE samples, regardless of processing, show a stable run over the whole distance. The composites with GC have higher values, but also tend to exhibit slight instability over 500 meters. This might be to heat accumulation

during friction or most probably to the formation of carbon film and further self-lubrication. The composites with n-Al₂O₃ have a highly unstable CoF as a consequence of constant abrasive wear. Nevertheless, this effect is not observed in the composite with hybrid reinforcement. This suggests a mixed type of wear mechanism, which leads to a more stable friction curve than the pure composites. It was observed that the coefficient of friction and wear rate of the hybrid composite are at a similar level as the neat HDPE sample. On the other hand, in previous works was it was found that the addition of GC improves the mechanical properties of HDPE because of the increase in polymer crystallinity, reduction of crystallite size and their internal stress [17]. A similar effect should be expected from hybrid composites, especially since a positive effect on both the modulus of elasticity and compressive strength was observed in the work of Nabhan et al. [12].

TABLE 3. Coefficient of friction and mass wear rate of composite samples

Sample name	CoF	Wear rate
HDPE	0.11±0.03	0.00%
GC	0.17±0.05	0.00%
Al2O3	0.35±0.13	0.30%
GC/Al2O3	0.14±0.04	0.00%
PrintHDPE	0.12±0.04	0.10%
PrintGC	0.20±0.07	0.50%
PrintAl2O3	0.34±0.12	2.10%
PrintGC/Al2O3	0.16±0.05	0.10%

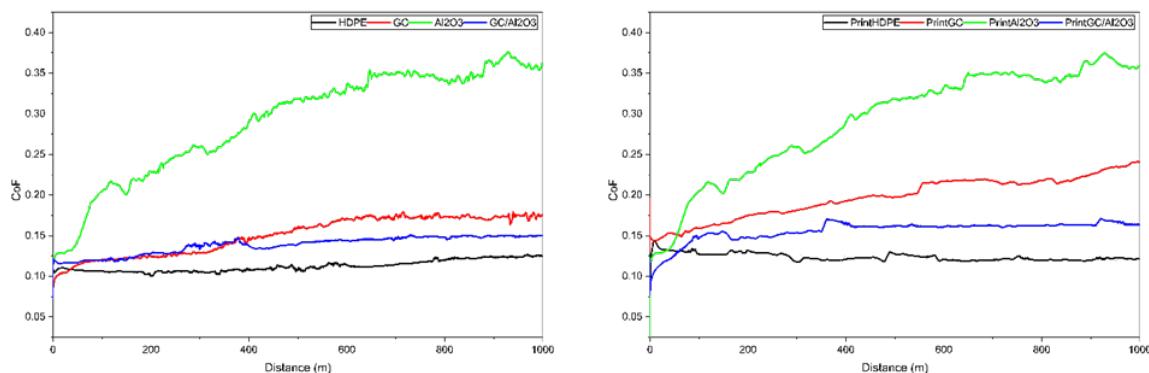


Fig. 3. Coefficient of friction curves: left - compression moulded samples, right - 3D printed samples

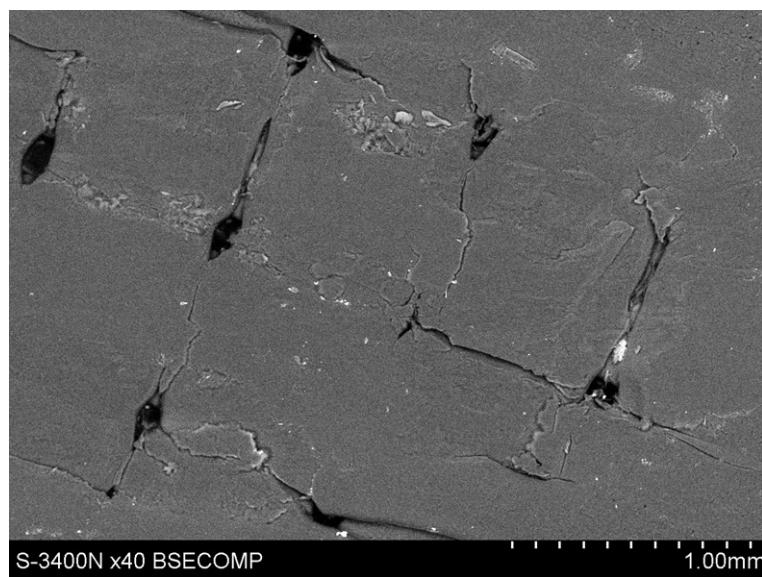


Fig. 4. Wear track of 3D printed HDPE sample

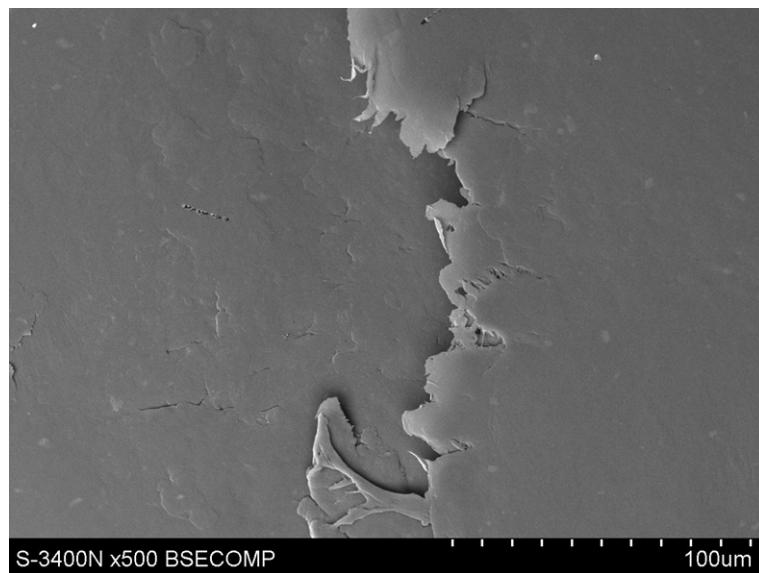


Fig. 5. Wear track of 3D printed GC composite sample

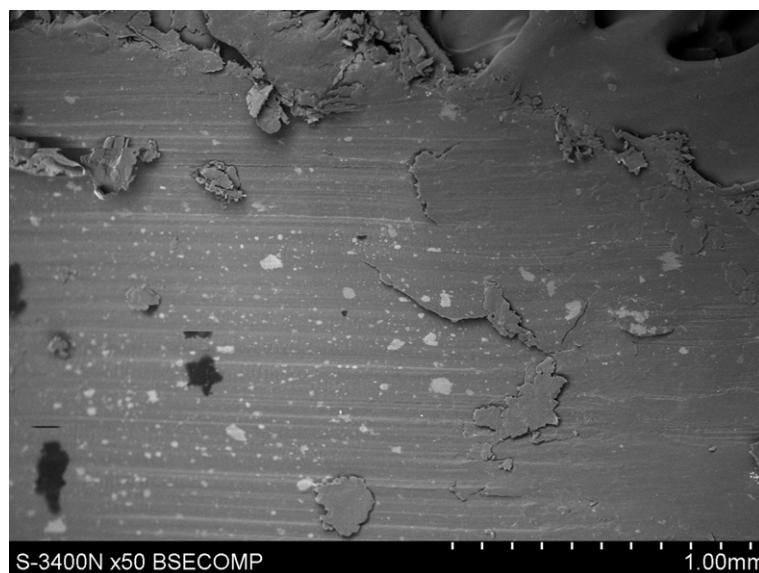


Fig. 6. Wear track of 3D printed n-Al₂O₃ composite sample

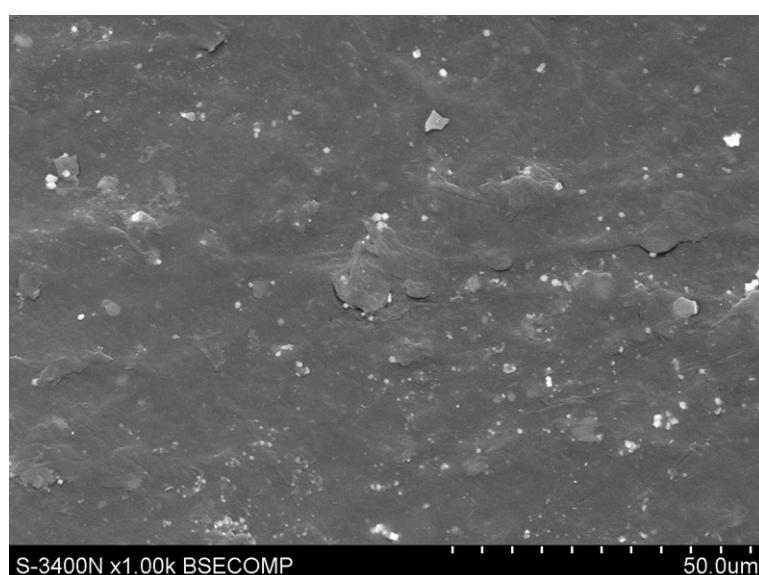


Fig. 7. Wear track of 3D printed GC/n-Al₂O₃ composite sample

Figures 4–7 present the wear tracks of the 3D printed samples. In the neat HDPE sample, the wear mechanism involves plastic deformation, the accumulation of wear debris and cracking. The cracks frequently originate at layer interfaces and along the print path. For the GC-only composite, plastic deformation predominates and only faint traces of carbon reinforcement along with deformed matrix particles are observed on the surface, suggesting that the initial wear follows a mechanism similar to neat HDPE before the onset of self-lubrication. During sliding, the GC particles were either pulled out together with the matrix debris or fragmented and smeared across the contact surface, becoming incorporated into the forming tribofilm. In the n-Al₂O₃ composite, a strong abrasive wear mechanism is evident, together with the agglomeration of ceramic particles. This suggests that the ceramic particles are pulled-out from the matrix during friction and act as microcutting agents until they agglomerate. At times, the nano alumina particles may be re-embedded into the matrix. This behaviour was not observed in the hybrid composite. Its wear track shows plastic deformation, matrix debris, and surface agglomerates of both the alumina and GC particles. Thus, as expected, the surface was hardened by ceramic particles that had previously been pulled from the matrix owing to abrasion, while concurrently, the GC particles were smeared over the surface to form a carbon tribofilm that mitigates further abrasion. This combination leads to stabilization of the CoF and minimizes or even prevents further material loss.

CONCLUSIONS

From the conducted research, following conclusions were formulated:

- The usage of hybrid reinforcement leads to more a stable CoF during wear than the composite with only glassy carbon or nano alumina particles.
- The wear mechanism of the hybrid reinforcement involves initial abrasive wear of the reinforcement particles, the agglomeration of ceramic particles, which hardened the surface,

and the formation of a carbon tribofilm that prevents further abrasive wear.

- The 3D printing process can lead to significantly higher wear values due to poor interlayer strength.

Further research should focus on correlation between layer strength and wear resistance of 3D printed composites. The impact of the printing parameters or other practices to improve layer adhesion should be considered in the future. Also, optimization of the composite composition will be performed to find the best ratio of GC and n-Al₂O₃, that ensures a positive wear mechanism but also improves the stiffness and mechanical strength of the composite.

Acknowledgements

The study was realized within the frames of Statutory Research Project nr 11/030/BK_25/1221 at the Silesian University of Technology, Poland.

REFERENCES

- [1] Akgul Y., Ahlatci H., Turan M.E., Erden M.A., Sun Y., Kilic A. Influence of carbon fiber content on bio-tribological performances of high-density polyethylene. *Mater Res Express.* 20 listopada 2019;6(12):125307.
- [2] Nabhan A., Sherif G., Abouzeid R., Taha M. Mechanical and Tribological Performance of HDPE Matrix Reinforced by Hybrid Gr/TiO₂ NPs for Hip Joint Replacement. *J Funct Biomater.* Marzec 2023;14(3):140.
- [3] Park H.C., Ryu J., Jung S., Park H.J., Oh H.K., Kook M.S. Effect of Hydroxyapatite Nanoparticles and Nitrogen Plasma Treatment on Osteoblast Biological Behaviors of 3D-Printed HDPE Scaffold for Bone Tissue Regeneration Applications. *Materials.* 21 stycznia 2022;15(3):827.
- [4] Mohsin M.E.A., Arsal A., Gulrez S.K.H., Muhamad Z., Fouad H., Alothman O.Y. Enhanced dispersion of carbon nanotubes in high density polyethylene matrix using secondary nanofiller and compatibilizer. *Fibers Polym.* Styczeń 2015;16(1):129–37.
- [5] Periasamy K., Karthigairajan M., Venkatesh R., Padmavathy S. Enhancement of high density polyethylene (HDPE) composite behavior by using TiO_{2f} and Al2O_{3f} bio ceramic fillers. *J Polym Res.* Wrzesień 2023;30(9):339.
- [6] Nabiiev A.A., Olejniczak A., Pawlukojc A., Balasoiu M., Bunoiu M., Maharramov A.M., et al. Nano-ZrO₂ filled high-density polyethylene composites: Structure, thermal properties, and the influence γ -irradiation. *Polym Degrad Stab.* Styczeń 2020; 171:109042.

[7] Vidakis N., Petousis M., Michailidis N., Mountakis N., Argyros A., Spiridaki M., et al. High-Density Polyethylene/Carbon Black Composites in Material Extrusion Additive Manufacturing: Conductivity, Thermal, Rheological, and Mechanical Responses. *Polymers*. Grudzień 2023;15(24):4717.

[8] Visco A., Grasso A., Recca G., Carbone D.C., Pistone A. Mechanical, Wear and Thermal Behavior of Polyethylene Blended with Graphite Treated in Ball Milling. *Polymers*. 22 marca 2021;13(6):975.

[9] Zhong W., Chen S., Tong Z. High-Temperature Tribological Behavior of HDPE Composites Reinforced by Short Carbon Fiber under Water-Lubricated Conditions. *Materials*. Czerwiec 2022;15(13):4508.

[10] Sevak R., Arora G., Gupta A. Finite element modeling and experimental characterization of wear in HDPE/CNT and PP/CNT nanocomposites processed via microwave-assisted compression molding. *Ind Lubr Tribol. Września* 2025;

[11] Suhas K., Murthy B.R.N., Hiremath A., Singh M.K., Palaniappan S.K., Rangappa S.M., et al. Investigation of thermo-mechanical and tribological performance of zirconia-coated MWCNTs reinforced HDPE composites. *Constr Build Mater. Październik* 2025;496:143830.

[12] Nabhan A., Taha M., Ibrahim A.M.M., Kamel A.A. Role of hybrid nanofiller GNPs/Al₂O₃ on enhancing the mechanical and tribological performance of HDPE composite. *Sci Rep. Sierpień* 2023;13(1):12447.

[13] Dabees S., Tirth V., Mohamed A., Kamel B.M. Wear performance and mechanical properties of MWCNT/HDPE nanocomposites for gearing applications. *J Mater Res Technol. Maj* 2021;12:2476–88.

[14] Olesik P., Kozioł M., Jała J. Processing and structure of HDPE/glassy carbon composite suitable for 3D printing. *Compos Theory Pract. 2020*;20(2):72–7.

[15] Olesik P., Godzierz M., Kozioł M. Preliminary Characterization of Novel LDPE-Based Wear-Resistant Composite Suitable for FDM 3D Printing. *Materials. 8 sierpnia* 2019;12(16):2520.

[16] Patadiya N.H., Dave H.K., Rajpurohit S.R. Effect of Build Orientation on Mechanical Strength of FDM Printed PLA. [In:] Shunmugam M.S., Kanthababu M., (eds). *Advances in Additive Manufacturing and Joining [Internet]*. Singapore: Springer Singapore; 2020 [cytowane: 16 listopada 2025]. s. 301–7. (Lecture Notes on Multidisciplinary Industrial Engineering). Dostępne na: http://link.springer.com/10.1007/978-981-32-9433-2_26

[17] Olesik P., Godzierz M., Kozioł M., Jała J., Szeluga U., Myalski J. Structure and Mechanical Properties of High-Density Polyethylene Composites Reinforced with Glassy Carbon. *Materials. 19 lipca* 2021;14(14):4024.