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This study investigates the microstructure and mechanical properties of an AA2024/SiC composite produced using 
powder metallurgy, followed by hot extrusion and multi-pass hot rolling. The composite, containing 5 wt% SiC, was 
fabricated by hot pressing at 450°C, then extruded and rolled with reductions of up to 66.2%. Microstructural analysis 
revealed uniform distribution of the SiC particles, grain refinement due to dynamic recrystallization (DRX), and en-
hanced particle dispersion with increasing rolling reduction. The hardness measurements showed significant improve-
ment, with values increasing from 91 HV1 in the extruded state to 112 HV1 after the final rolling pass, and further 
grew to 151 HV1 after heat treatment. The tensile tests confirmed a strengthening effect, with the yield stress and 
ultimate tensile strength rising with rolling reduction from 205 MPa and 304 MPa (after initial rolling) to 236 MPa 
and 352 MPa (after the final rolling), respectively. Solution treatment and aging of the rolled composite resulted in  
a sharp increase in yield stress and ultimate tensile strength, reaching 293 MPa and 431 MPa after the first pass, 
increasing to 375 MPa and 484 MPa after the final pass. The study concludes that hot rolling significantly enhances 
the mechanical performance of AA2024/SiC composites, with grain refinement and particle fragmentation playing key 
roles in the strengthening mechanisms.  
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INTRODUCTION 
 

Aluminum-based composites show great po-
tential for applications in industries such as auto-
motive, aerospace, and space exploration, result-
ing from their good combination of properties and 
relatively low production costs. Research on alu-
minum-based composites has been ongoing for 
several decades and will continue to be of interest. 
There is an extensive body of literature on metal 
matrix composites reinforced with particles such 
as B4C [1–2], Al₂O₃ [3–5], AlN [6–9], TiB₂  
[10–13], TiC [14–17], or fly ash [18–20]. A par-

ticular focus has been given to composites rein-
forced with silicon carbide (SiC) [21–41]. The ad-
dition of SiC particles to aluminum or its alloys 
provides good wear resistance, high thermal con-
ductivity, and the ability to increase the strength of 
the composite. It is also relatively inexpensive 
compared to other reinforcements used for manu-
facturing composites. The mechanical properties 
of metal matrix composites can be controlled by 
the particle type, volume fraction, shape, and size 
of the particles. 
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Particle-reinforced composites are produced 
by means of casting methods and powder metal-
lurgy techniques. The casting methods include 
squeeze casting [2, 18, 19, 27, 28], and stir casting 
[16, 18, 19, 29, 30]. The powder metallurgy meth-
ods include pressing and sintering [31], hot press-
ing [1, 9, 20], spark plasma sintering [3, 4], or ad-
ditive manufacturing, such as the laser powder bed 
fusion process (LPBF) [13, 32]. Low-temperature 
solid-state powder processes eliminate reactions 
between the reinforcement particles and the ma-
trix, which are indeed an important problem with 
methods involving molten metal [33–34]. 

Composites made from powders are porous, 
and their density can be increased by applying 
plastic deformation, thereby enhancing their me-
chanical properties. Particle-reinforced compo-
sites can successfully be processed hot in forging 
[35], extrusion [5, 6, 34, 36–48], or rolling [39, 
41], or they can also be cold rolled or drawn [37, 
38, 40], which leads to a significant increase in 
their strength.  

The aim of this study is to investigate the ef-
fect of hot rolling and heat treatment on the micro-
structure and mechanical properties of the 
AA2024/SiC composite produced from powders 
by means of hot pressing and extrusion. 

MATERIALS AND METHODS  

The AA2024/SiC composite was prepared us-
ing powder metallurgy by hot pressing. The com-
pacts were then subjected to plastic deformation 
processing via hot extrusion and rolling. The 
AA2024 powder used in the composite was com-
mercially sourced from Avimetal Powder Metal-
lurgy Technology Co., Ltd., with powder charac-
teristics provided by the manufacturer. The chem-
ical composition of the alloy powder is presented 
in Table 1. This powder had particle sizes in the 
range of 45-106 μm. SiC particles from the F800 
fraction, with an average particle size of 6.5 μm, 
were used. 

TABLE 1. Chemical composition of AA2024 powder 

Si Fe Cu Mn Mg Ni Zn Ti Al 
0.42 0.36 4.01 0.78 1.53 0.04 0.07 0.06 Bal. 

The ultrafine-grained microstructure of the 
AA2024 powder and the hardness indentation on 
the powder cross-section are shown in Figure 1a 
and b, respectively. The microhardness of the at-
omized AA2024 powder was 120±7.7 HV0.01. 

 

 
Fig. 1. Microstructure of AA2024 powder (a) and microhardness 

indentation on powder particle cross-section (b) 

The powder mixture, consisting of 95 wt% 
AA2024 and 5 wt% SiC, was prepared in a dou-
ble-cone mixer. The mixing time was 1 hour. 

Hot pressing and extrusion 

The mixture was then hot-pressed under iso-
thermal conditions at the temperature of 450°C 
and pressure of 80 MPa. Figure 2 presents the re-
sulting compacts, which had a diameter of  
39.9 mm and a height of approximately 37.5 mm. 
The average density of the compacts, determined 
using the geometrical method and confirmed by 
the Archimedes method was 2.771 g/cm³. 

 
Fig. 2. Hot-compacted samples of AA2024/SiC composite 
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Forward extrusion of the AA2024/SiC com-
pacts was carried out on a hydraulic press using an 
extrusion die with a square 14x14 mm orifice.  
The process was conducted under isothermal con-
ditions at 450°C. The extrusion ratio was 6.4. 
Samples before and after extrusion are displayed 
in Fig. 3. The prepared samples had a length of 
~200 mm. Before rolling, each sample was cut 
into three parts.  

 
a) 

 
b) 

Fig. 3. Samples before and after extrusion (a) and cut specimens 
prepared for rolling (b) 

Hot rolling 

The rolling process of the previously extruded 
samples was performed on a quarto rolling mill. 
Prior to rolling, the samples were heated for  
30 minutes in an electric furnace. The rolling pro-
cess consisted of 11 passes, with a rolling reduc-
tion of approximately 10% in each pass. Before 
each subsequent pass, the samples were reheated 
for 5 minutes at the temperature of 450°C. The 
process scheme is shown in Figure 4. 

 
Fig. 4. Rolling process scheme 

Material characterization after rolling was per-
formed on samples after 3, 5, 7, 9, and 11 passes. 
Data such as the sample height after rolling, reduc-
tion in individual passes, and total reduction are 
presented in Table 2. 

 
TABLE 2. Thickness of samples after each pass in rolling process and corresponding reductions 

 
The average density of the composite, deter-

mined by the Archimedes method, increased  
to 2.795 g/cm³ after hot extrusion and further  

to 2.797 g/cm³ following hot rolling with a 66.2% 
reduction. 

  

Pass 
number 

Thickness after defor-
mation, mm 

Reduction in individ-
ual passes, % Total reduction RR, % 

Designation of samples left for 
microstructure and mechanical 

properties testing 

1 12.30 11.5 11.5 - 
2 11.18 9.1 19.6 - 
3 10.04 10.2 27.8 W1 
4 8.98 10.6 35.4 - 
5 8.04 10.5 42.2 W2 
6 7.30 9.2 47.5 - 
7 6.70 8.2 51.8 W3 
8 6.20 7.5 55.4 - 
9 5.70 8.1 59.0 W4 

10 5.26 7.7 62.2 - 
11 4.70 10.6 66.2 W5 
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Heat treatment 

The selected specimens were heat-treated after 
rolling. Solution treatment was carried out at 
480°C for 2 hours, followed by artificial aging at 
180°C for 6 hours.  

Material testing methods 

AA2024/SiC was subjected to microstructure, 
hardness, and tensile testing. Microstructural ex-
aminations were conducted by means of a Leica 
DM4000M light microscope. Microstructure doc-
umentation was performed for both unetched and 
etched specimens, utilizing Keller's reagent  
(190 ml of distilled water, 5 ml of nitric acid, 2 ml 
of hydrofluoric acid, and 3 ml of hydrochloric 
acid) and Weck's reagent (100 ml of distilled wa-
ter, 4 g of potassium permanganate, and 1 g of so-
dium hydroxide). Grain size analysis was per-
formed by employing the ImageJ program on the 
etched microstructure micrographs for both the 
extruded state and after rolling. Hardness meas-
urements were taken using a Struers DURAMIN-
40 M1 hardness tester. The material was tested in 
the extruded state, after rolling, and after rolling 
followed by heat treatment. Hardness measure-
ments were taken at randomly selected locations, 
with five indentations made per location. Tensile 
tests of the samples were conducted by means of a 
Zwick/Roell Z250 testing machine. These tests 
were performed both in the as-rolled state as well 
as after rolling and heat treatment. 

RESULTS AND DISCUSSION 

Microstructure 

The unetched microstructure showing the distribu-
tion of SiC in the matrix of the extruded composite 
is presented in Fig. 5. The distribution of SiC in 
the matrix is relatively uniform, both in the cross-
sectional (Fig. 5a) and longitudinal (Fig. 5b) direc-
tions along the extrusion direction. Larger ag-
glomerations are visible in some areas. A band-

like distribution of carbides in the matrix along the 
extrusion direction is also observed. The defor-
mation of the matrix during extrusion contributed 
to the fragmentation of larger SiC particles, with 
the fragmented larger particles highlighted in  
Fig. 5b. 

 
a) 

 
b) 

Fig. 5. Distribution of SiC in matrix after hot extrusion: a) cross-
section, b) longitudinal section along extrusion direction 

The Weck-etched matrix microstructure of the 
extruded composite is presented in Fig. 6. Com-
paring the microstructure to the powder micro-
structure (Fig. 1a), it can be observed that grain 
refinement occurred during the extrusion process. 
In the cross-sectional view (Fig. 6a), the grains are 
nearly equiaxed, while in the longitudinal direc-
tion (Fig. 6b), they are elongated in the direction 
of material flow. 
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a) 

 
b) 
Fig. 6. Etched microstructure of extruded composite: a) cross-

section and b) longitudinal section in extrusion direction 

The distribution of SiC particles in the matrix 
after rolling with reductions of 27.8% and 66.2% 
is presented in Figures 7 and 8, respectively. Fur-
ther plastic deformation of the extruded composite 
resulted in additional fragmentation of the SiC 
particles, leading to an increased number of very 
fine SiC particles. As a result, a more uniform dis-
tribution of SiC in the matrix was achieved. How-
ever, in the longitudinal section, the characteristic 
banded arrangement of SiC particles is still  
visible. 

 
a) 

 
b) 
Fig. 7. Distribution of SiC in matrix after hot extrusion and hot 

rolling with reduction of  27.8%: a) cross-section, b) lon-
gitudinal section along extrusion and rolling directions. 

 
a) 
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b) 

Fig. 8. Distribution of SiC in matrix after hot extrusion and hot 
rolling with reduction of 66.2%: a) cross-section, b) lon-
gitudinal section along extrusion and rolling directions. 

The etched matrix microstructure of the hot-
extruded and hot-rolled composite with reductions 
of 27.8% and 66.2% is presented in Figures 9 and 
10, respectively. As a result of the rolling process, 
significant grain refinement of the matrix occurred 
via dynamic recrystallization (DRX). The greater 
the rolling reduction, the finer the grain. In the 
cross-sectional view, the grains are nearly equi-
axed, while in the longitudinal section, they are 
slightly elongated in the direction of material flow. 
It can also be observed that the grains are finer in 
the vicinity of the SiC particles. 

 
a) 

 
b) 
Fig. 9. Etched microstructure of hot-extruded and hot-rolled com-

posite with reduction of 27.8%: a) cross-section, b) longi-
tudinal section along extrusion and rolling directions. 

 
a) 

 
b) 
Fig. 10. Etched microstructure of hot-extruded and hot-rolled 

composite with 66.2% reduction: a) cross-sectional,  
b) longitudinal direction along extrusion and rolling di-
rections 
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A detailed grain size analysis of the matrix 
was performed based on microstructure images 
using the ImageJ program for the material after hot 
extrusion and after hot rolling, following the first 
and final passes. The results are presented in  
Fig. 11. As mentioned earlier, the grain size de-
creases with each stage of plastic deformation. The 
average grain size after extrusion was 2.54 μm, after 
the first pass in the rolling process (RR = 27.8%) 
it was 1.87 μm, and after the final pass (RR = 66.2%) 
it was 1.47 μm. As can be observed in Fig. 11, the 
distributions narrow after each stage of plastic de-
formation, resulting in a more uniform grain struc-
ture. 

 

Fig. 11. Grain size distribution in cross-section for extruded and 
hot-rolled samples 

The microstructure of the AA2024/SiC com-
posite etched with Keller's reagent after hot rolling 
(final pass) and subsequent heat treatment is pre-
sented in Fig. 12. It is characterized by very fine 
precipitates with no visible grain boundaries. 

 

Fig. 12. Etched microstructure on cross-section of hot-rolled 
composite with 66.2% reduction and heat treatment 

Hardness 

The average hardness of the AA2024/SiC 
composite in the extruded state was 91 HV1. Fur-
ther processing of the material by rolling resulted 
in a rise in hardness. After the first pass, the hard-
ness grew to 101 HV1, and after the final pass it 
reached 112 HV1. Heat treatment caused a signif-
icant increment in hardness, which rose to  
136 HV1 for the composite rolled in a single pass 
and to 151 HV1 for the composite after the final 
pass. The relationship between the hardness and 
rolling reduction for the composite in the as-rolled 
state as well as after rolling and heat treatment is 
shown in Fig. 13. 

 

Fig. 13. Relationship between average hardness, rolling reduc-
tion, and effect of applied heat treatment 

In the case of the heat-treated composite,  
a similar growing trend in hardness with respect to 
rolling reduction was observed, as seen in the 
composite in the as-rolled state.  

Results of tensile tests 

The engineering stress-strain curves from the 
tensile tests for the Al/SiC composite in the as-
rolled state and after rolling and heat treatment are 
presented in Fig. 14.  
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Fig. 14. Engineering stress – elongation for hot rolled and heat 

treated AA2024/5SiC composite 

The data from the tensile test are presented in 
Table 3. The yield stress of the composite after the 

first pass in the rolling process was 205 MPa, and 
the ultimate tensile strength was 304 MPa. After 
the final pass in the rolling process, the YS grew 
to 236 MPa, and the UTS rose to 352 MPa. Heat 
treatment significantly affected the increment in 
the strength properties and the decrease in ductil-
ity. The yield stress increased to 293 MPa and  
375 MPa for the heat-treated composite after the 
first and final rolling passes, respectively. The 
UTS grew to 431 MPa and 484 MPa for the heat-
treated composite after the first and final rolling 
passes, respectively. The relationship between YS 
and UTS with rolling reduction is shown in  
Fig. 15. In the case of elongation, no downward 
trend was observed; the elongation remained com-
parable, ranging from 3.8% to 4.4%. 

 

TABLE. 3. Mechanical properties of hot rolled and heat treated composite 

No. Process RR, % YS, MPa UTS, MPa El, % 

1 Rolling 
R 

27.8 205 304 10.1 
2 66.2 236 352 9.8 
3 

Rolling + heat 
treatment 

R+HT 

27.8 293 431 3.8 
4 42.2 333 440 4.4 
5 51.8 358 455 3.9 
6 59.0 365 467 3.8 
7 66.2 375 484 4.2 

 
Fig. 15. Effect of rolling reduction and heat treatment after rolling 

on yield stress, ultimate tensile strength of AA2024/SiC 
composite 

As in the case of hardness (Fig. 13), a growing 
trend in the mechanical properties of YS and UTS 
can be observed with increasing rolling reduction. 
The increase in YS and UTS is associated with mi-
crostructural changes, such as grain and particle 
refinement after successive rolling stages. Similar 
relationships were obtained in the studies of  
Z. Wang et al. in [41], but the strengthening effect 
of the AA2009/15%SiC composite produced by 
powder metallurgy was observed only up to an RR 
of 70%; further reduction led to a decline in com-
posite strength. On the other hand, Luo et al. [39] 
demonstrated in their research that for the 
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A356/5SiCp composite produced by the stir cast-
ing method, the mechanical properties continued 
to improve with increasing rolling reduction up to 
90%. In both the mentioned studies, the authors 
also reported significant microstructural refine-
ment occurring due to dynamic recrystallization 
(DRX) after successive passes during the hot roll-
ing process. 

CONCLUSIONS 

The combination of hot pressing and hot ex-
trusion resulted in an AA2024/SiC composite with 
a density close to that of solid material. The mi-
crostructure of the composite in the extruded state 
was characterized by very fine grains and a uni-
form distribution of SiC in the matrix, without sig-
nificant agglomeration. Based on the conducted 
research, key conclusions were drawn after the 
subsequent stage of plastic deformation via hot 
rolling. 
• Hot rolling significantly refined the micro-

structure, leading to a reduction in the matrix 
grain size and fragmentation of larger SiC par-
ticles. As a result, the composite exhibited  
a more uniform microstructure with a nar-
rower grain size distribution. The refinement 
effect became more pronounced with increas-
ing rolling reduction, with the highest degree 
of uniformity observed at a 66.2% reduction. 

• Microstructural refinement positively im-
pacted the mechanical properties of the com-
posite. The hardness, yield strength YS, and 
ultimate tensile strength UTS grew with in-
creasing rolling reduction, while elongation 
remained comparable regardless of the rolling 
reduction. 

• Heat treatment resulted in a significant in-
crease in the strength properties, while main-
taining the correlation with rolling reduction. 

• The combined processing approach of hot ex-
trusion, hot rolling, and heat treatment effec-
tively optimized the properties of the 
AA2024/SiC composite. The study confirms 
that controlled plastic deformation and heat 

treatment can significantly enhance the me-
chanical properties of aluminum-based metal 
matrix composites, making them more suita-
ble for high-performance applications. 
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