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The homogenization for classifying composites and determining their effective properties is an important optimal 
design problem of material sciences studied by mathematical modeling. The application of artificial intelligence (AI) and 
machine learning (ML) in the theory of composite materials is discussed. One of the main problems is the choice of 
characteristic ML features to describe multi-scale dispersed random composites and to predict their macroscopic 
properties. The complexity drastically increases when confronted with tasks such as estimating the effective properties of 
random composites, exploring optimal design scenarios with variable properties of components, or determining the optimal 
location and shape of inclusions since the myriad use of numerical computations proves challenging due to constraints in 
time and memory. In such instances, analytical, exact, or approximate formulas with the optimized parameters in symbolic 
form are preferred because powerful calculus methods can be applied to select the optimal parameters. The present paper 
is devoted to adequately choosing the parameters called structural sums, and corresponding analytical formulas. Such 
a formula is often asymptotic, and its correctly determined asymptotic precision shows its application area. We consider 
the question of the RVE size equivalent to the number of inclusions 𝑵𝑵  per periodicity cell. It can be investigated 
numerically by solving a periodicity problem with 𝑵𝑵  increasing up to stable effective constants not depending on 𝑵𝑵 . 
Though one can find works in literature following these lines, they concern special distributions of inclusions with the 
numerical results performed for small 𝑵𝑵 and for a small number of statistically investigated samples. A comprehensive 
study of 2D two-phase composites with equal circular inclusions is developed. It is demonstrated that using the 
concentration of inclusions and a contrast parameter is insufficient to properly study dispersed composites. The method of 
structural sums in combination with ML to improve model accuracy is applied. Based on the study, a new approach is 
suggested for selecting optimal parameters to analyze and classify two-dimensional dispersed composite structures. The 
included content fits  2020 Mathematics Subject Classification: 74Q15, 74-10.  

Keywords: artificial intelligence, machine learning, composite material, multi-scale problem, microstructure, homogenization, 
structural sum 

INTRODUCTION 
 

Composites consist of two or more constituent 
materials with distinct physical properties used in 

engineering. The theory of composites is an im-
portant part of material sciences concerning hetero-
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geneous media as well as mathematical and compu-
tational methods to determine their macroscopic 
properties. The mathematical theory of composites, 
the homogenization theory [1, 2, 3], is based on the 
measure theory and partial differential equations 
with highly oscillating coefficients. The computa-
tional methods involve predicting and understand-
ing their behavior through advanced computer sim-
ulations. Artificial intelligence (AI) and machine 
learning (ML) have recently emerged as powerful 
tools. AI and ML enable the development of predic-
tive models based on extensive datasets generated 
from experiments and simulations. The main task of 
these models is to accurately predict the elastic, ther-
mal, and electrical properties of composites. 

The description of the microstructure of compo-
sites is the first crucial task. Image processing algo-
rithms [4, 5] analyze micrographs from microscopy 
and tomography, identifying the physical properties 
of structures and geometric features. Convolution 
neural networks are used to analyze microstructural 
images, classify different phases, and detect their lo-
cations in addition to various defects, such as frac-
tures or holes. 

The second crucial step is the constructive ho-
mogenization of the processed images to classify the 
considered composites and estimate their effective 
properties. In previous works, the second step was 
reduced to a statistical description of phases and di-
rect computation by standard packages based on the 
finite element method (FEM). The opinion that 
a computer can calculate the effective constants of 
any composite is widely known in the engineering 
community. The numerical computation of effective 
constants becomes a virtually impossible task for 
dispersed random composites with many inclusions 
(≥1000). Simple empirical equations were proposed 
to determine the effective constants in engineering. 
Many of them are oversimplified to be applied to 
composites. Using AI and ML without preliminary 
analysis of the used parameters significantly com-
plicates the study and also leads to oversimplified 
models. 

In the present paper, we discuss the constructive 
implementation of the theory of composites follow-
ing Albert Einstein, who said: "Everything should 
be made as simple as possible, but not simpler." We 
analyze the methodological trends suggested by 
AI/ChatGPT and propose the choice of an optimal 
set of key parameters. We demonstrate that the 
method of structural sums [6, 7] in combination with 
ML can serve as a practical study method in the the-
ory of composites, particularly for the classification 
of two-dimensional dispersed random structures.  

Straightforward application of various methods 
to the analysis of composites 

The constructive homogenization of processed 
images allows classification of the considered com-
posites and estimation of their effective properties. 
For definiteness, we consider the conductivity of 
two-dimensional (2D) two-phase dispersed compo-
sites modeling the flux in fiber reinforced compo-
sites. 

The description of the phases goes by the fol-
lowing lines. Let the phases in a dispersed compo-
site be determined in a representative volume ele-
ment, and their properties be known. For instance, 
a set of 𝑁𝑁 phases can be described by pairs {𝜆𝜆𝑗𝑗 , 𝑓𝑓𝑗𝑗} 
(𝑗𝑗 = 1,2, … ,𝑁𝑁) where 𝜆𝜆𝑗𝑗  denotes the conductivity 
of 𝑗𝑗th phases and 𝑓𝑓𝑗𝑗 its volume fraction in the con-
sidered composites. Pairs {(𝜇𝜇𝑗𝑗 , 𝜈𝜈𝑗𝑗), 𝑓𝑓𝑗𝑗} can be con-
sidered for elasticity problems, where 𝜇𝜇𝑗𝑗  and 𝜈𝜈𝑗𝑗 
stand for the shear modulus and Poisson’s ratio, re-
spectively. Engineers usually add to the above pa-
rameters the number of particles per representative 
volume element (RVE), describe their shapes, and 
make other straightforward observations. The em-
pirical analysis may be extended to an advanced de-
scription of geometry [8]. 

The effective constants are determined by the 
different mean values of {𝜆𝜆𝑗𝑗 , 𝑓𝑓𝑗𝑗} . Following the 
lines of [9], we now ask AI (ChatGPT) and refer to 
Wikipedia with the question, how to determine ef-
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fective conductivity 𝜆𝜆𝑒𝑒  with the selected infor-
mation {𝜆𝜆𝑗𝑗 ,𝑓𝑓𝑗𝑗}  ( 𝑗𝑗 = 1,2, … ,𝑁𝑁 ). We also ask for 
the computational scheme for random composites 
from Wikipedia https://en.wikipedia.org/wiki/ Rep-
resentative/_ elementary/_volume. Wikipedia pre-
sents a real image of the two-phase macroscopically 
isotropic dispersed composites shown on the left 
side of Figure 1. This picture displays a section per-
pendicular to a fibrous unidirectional composite.  

 

Fig. 1. Methodologically wrong scheme of RVE from Wikipedia 
https://en.wikipedia.org/wiki/Representative/_elementary/_vol-
ume.Random (left) and regular (right) composites in Figure 1 
can have significantly different macroscopic properties in the 
case of percolation 

ChatGPT gives information on the effective 
conductivity of dispersed 2D composites, as shown 
below in cursive font.  

• Parallel model (Reuss, 1929):  

1
𝜆𝜆𝑒𝑒

= 𝑓𝑓
𝜆𝜆1

+ 1−𝑓𝑓
𝜆𝜆

: = � 1
𝜆𝜆(𝐱𝐱)

�.   (1) 

• Series model (rule of mixtures by Voigt, 1889):  

𝜆𝜆𝑒𝑒 =
1

|𝑄𝑄|�𝑄𝑄
𝜆𝜆(𝐱𝐱) 𝑑𝑑𝐱𝐱 = 𝑓𝑓𝜆𝜆1 + 

+(1 − 𝑓𝑓)𝜆𝜆: = 〈𝜆𝜆(𝐱𝐱)〉.      (2) 

Keep in mind that these models make certain 
assumptions and may not apply to all fiber 
reinforced composites. The actual behavior of 
a specific composite may depend on factors such as 
fiber orientation, thermal contact resistance, and 
other microstructural details. 

• Bruggeman equation:  

𝑓𝑓  𝜆𝜆1−𝜆𝜆𝑒𝑒
𝜆𝜆1+𝜆𝜆𝑒𝑒

+ (1 − 𝑓𝑓) 𝜆𝜆−𝜆𝜆𝑒𝑒
𝜆𝜆+𝜆𝜆𝑒𝑒

= 0.  (3) 

• Voigt-Reuss bounds:  

� 1
𝜆𝜆(𝐱𝐱)

� ≤ 𝜆𝜆𝑒𝑒 ≤ 〈𝜆𝜆(𝐱𝐱)〉.   (4) 

• Hashin-Shtrikman bounds: The effective 
conductivity of any 2D macroscopically isotropic 
two-phase composite satisfies the Hashin-
Shtrikman bounds 

𝜆𝜆− ≤ 𝜆𝜆𝑒𝑒 ≤ 𝜆𝜆+.    (5) 

If 𝜆𝜆1 > 𝜆𝜆, the bounds are expressed as:  

𝜆𝜆+ = 𝜆𝜆1 �1 + 2(1−𝑓𝑓)(𝜆𝜆−𝜆𝜆1)
𝑓𝑓(𝜆𝜆−𝜆𝜆1)+2𝜆𝜆1

�,   (6) 

𝜆𝜆− = 𝜆𝜆 �1 + 2𝑓𝑓(𝜆𝜆1−𝜆𝜆)
(1−𝑓𝑓)(𝜆𝜆1−𝜆𝜆)+2𝜆𝜆

�.   (7) 

If 𝜆𝜆1 < 𝜆𝜆, the upper and lower bounds are swapped. 
Additionally, other models and approaches, 

such as the Maxwell model or Mori-Tanaka method, 
can be used to estimate effective properties and may 
provide different insights depending on the specifics 
of the composite material and its structure.  

We now analyze the mined information using 
fundamental mathematical investigations [1, 2, 3, 6, 
7] and make comments. Formulas (1)-(2) look 
sensible, but their careful study suggests that they 
are valid for layered composites, not dispersed 
media. One can note that (1)-(2) coincide with 
effective conductivity perpendicular and parallel to 

the fibers, 𝜆𝜆⊥ = � 1
𝜆𝜆(𝐱𝐱)

�  and 𝜆𝜆|| = 〈𝜆𝜆(𝐱𝐱)〉 , and yield 

the Voigt-Reuss bounds (4). The note after (2) is 
correct. 

Hashin-Shtrikman bounds (5)-(7) improve the 
Voigt-Reuss bounds and give the most valuable 
information for composites when the location of 
inclusions is not known. Using (5)-(7) makes it easy 
to check the validity of empirical models such as 
Bruggeman’s approximation based on the correct 
opinion that anybody may sketch any curve between 

https://en.wikipedia.org/wiki/Representative/_elementary/_volume
https://en.wikipedia.org/wiki/Representative/_elementary/_volume
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the Hashin-Shtrikman bounds displayed in Figure 2. 
It does not matter which curve is taken in the case 
𝜆𝜆1
𝜆𝜆

= 5. Nevertheless, it does in the case 𝜆𝜆1
𝜆𝜆

= 50.  

 
Fig. 2. Hashin-Shtrikman bounds (0.5)-(0.7) (dashed lines) and 

Brugemann heuristic equation (0.3) (solid line) for: 𝝀𝝀𝟏𝟏 = 𝟓𝟓𝟓𝟓, 
𝝀𝝀 = 𝟏𝟏𝟏𝟏 (black) and 𝝀𝝀𝟏𝟏 = 𝟓𝟓, 𝝀𝝀 = 𝟏𝟏 (blue) 

It is worth noting that Bruggeman’s 
approximation may be out of the higher-order 
bounds [10]. 

The paragraph after (7) contains the information 
which has to be analyzed as Brugemann’s 
approximation [12]. 

Figure 1 demonstrates the methodologically 
wrong scheme of the RVE when a regular array 
replaces a random composite. One can find exact 
analytical formulas for the effective conductivity of 
regular arrays in [6] and approximate analytical 
formulas for elastic problems in [7]. It turns out that 
the effective conductivity of the hexagonal array of 
disks attains a minimum if 𝜆𝜆1 > 𝜆𝜆 . Therefore, the 
scheme in Figure 1 leads to extreme values of 𝜆𝜆𝑒𝑒 , 
not adequately representing a class of random 
composites. This misleading scheme implies 
a numerical solution to the problems for the unit 
cells depicted in the third column of Figure 1. 
Moreover, the double periodicity cell for the 
hexagonal array is presented as a unit cell that 
doubles the discretization domain. 

Method of structural sums 

Let the location of the inclusions in the left 
picture of Figure 1 be given. The numerical solution 

to the considered problem for small fragments of the 
picture can be performed using standard engineering 
simulation software. 

The complexity drastically increases when 
confronted with tasks such as estimating the 
effective properties of random composites, 
exploring optimal design scenarios with variable 
properties of components, or determining the 
optimal location and shape of inclusions since the 
myriad use of numerical computations proves 
challenging due to constraints in time and memory. 

In such instances, analytical, exact, or 
approximate formulas with the optimized 
parameters in symbolic form are preferred because 
powerful calculus methods can be applied to select 
the optimal parameters. The present section is 
devoted to adequately choosing the parameters and 
corresponding analytical formulas. Such a formula 
is often asymptotic, and its correctly determined 
asymptotic precision shows its application area. 

The question of the RVE size equivalent to the 
number of inclusions 𝑁𝑁 per cell arises naturally. It 
can be investigated numerically by solving 
a periodicity problem with 𝑁𝑁  increasing up to 
stable effective constants not depending on 𝑁𝑁 . 
Though one can find works in literature following 
these lines, they concern special distributions of 
inclusions with the numerical results performed for 
small 𝑁𝑁  and for a small number of statistically 
investigated samples. 

In this case, asymptotic and analytical methods 
can be helpful. Consider 2D two-phase composites 
with equal circular inclusions of conductivity 𝜆𝜆1 
and matrix conductivity 𝜆𝜆, represented by cell 𝑄𝑄 of 
the normalized unit area. Introduce the 
dimensionless contrast parameter  

𝜚𝜚 = 𝜆𝜆1−𝜆𝜆
𝜆𝜆1+𝜆𝜆

.   (8) 

Consider Eisenstein functions 𝐸𝐸𝑝𝑝(𝑧𝑧)  [11] 
expressed in terms of the Weierstrass elliptic 
functions  

𝐸𝐸2(𝑧𝑧) = ℘(𝑧𝑧) + 𝑆𝑆2,    𝐸𝐸3(𝑧𝑧) = 
= −1

2
𝐸𝐸′2(𝑧𝑧) = −1

2
℘′(𝑧𝑧),    …,  (9) 
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where lattice sum 𝑆𝑆2 = 𝜋𝜋  for unit square 
fundamental domain 𝑄𝑄  considered below for the 
plane torus, see Figure 3. 

The structural sums can be introduced following 
[6]  

𝑒𝑒2 =
1
𝑁𝑁2 �

𝑁𝑁

𝑘𝑘0,𝑘𝑘1=1

  𝐸𝐸2(𝑎𝑎𝑘𝑘0 − 𝑎𝑎𝑘𝑘1), 

𝑒𝑒𝑝𝑝𝑝𝑝 =
1

𝑁𝑁1+𝑝𝑝 �
𝑁𝑁

𝑘𝑘0,𝑘𝑘1,𝑘𝑘2=1

𝐸𝐸𝑝𝑝 

�𝑎𝑎𝑘𝑘0 − 𝑎𝑎𝑘𝑘1�𝐸𝐸𝑝𝑝�𝑎𝑎𝑘𝑘1 − 𝑎𝑎𝑘𝑘2�    (𝑝𝑝 = 2,3),        (10) 

𝑒𝑒222 =
1
𝑁𝑁4 �

𝑁𝑁

𝑘𝑘0,𝑘𝑘1,𝑘𝑘2,𝑘𝑘3=1

𝐸𝐸2�𝑎𝑎𝑘𝑘0 − 𝑎𝑎𝑘𝑘1� 

𝐸𝐸2(𝑎𝑎𝑘𝑘2 − 𝑎𝑎𝑘𝑘3)𝐸𝐸2(𝑎𝑎𝑘𝑘2 − 𝑎𝑎𝑘𝑘3), 

… …, 

where it is assumed for shortness that 𝐸𝐸2(𝑎𝑎𝑘𝑘 −  𝑎𝑎𝑚𝑚) =
𝑆𝑆2 and 𝐸𝐸3(𝑎𝑎𝑘𝑘 −  𝑎𝑎𝑚𝑚) = 0, if 𝑎𝑎𝑘𝑘 = 𝑎𝑎𝑚𝑚. 

The structural sum (0.10) is a discrete multiple 
convolution of the Eisenstein functions. A fast, 
almost linear algorithm in 𝑁𝑁  for its computation 
was developed in [7]. 

Using complex structural sums, we form matrix 
structural sums  

𝐞𝐞𝑚𝑚1,…,𝑚𝑚𝑞𝑞 = �
Re  𝑒𝑒𝑚𝑚1,…,𝑚𝑚𝑞𝑞 −Im  𝑒𝑒𝑚𝑚1,…,𝑚𝑚𝑞𝑞

−Im  𝑒𝑒𝑚𝑚1,…,𝑚𝑚𝑞𝑞 Re  𝑒𝑒𝑚𝑚1,…,𝑚𝑚𝑞𝑞
∗ �,  

(11) 

where 𝑒𝑒𝑚𝑚1,…,𝑚𝑚𝑞𝑞
∗   has the same form (10) except at 

terms 𝐸𝐸2(𝑎𝑎𝑘𝑘 − 𝑎𝑎𝑚𝑚), which have to be replaced by 
the expressions 2𝜋𝜋 − 𝐸𝐸2(𝑎𝑎𝑘𝑘 − 𝑎𝑎𝑚𝑚). 

The effective conductivity tensor has the form 

𝝀𝝀⊥
𝜆𝜆

= (1 + 2𝜚𝜚𝜚𝜚)𝐈𝐈 +
2𝜚𝜚2𝑓𝑓2

𝜋𝜋
𝐞𝐞2 +

2𝜚𝜚3𝑓𝑓3

𝜋𝜋2
𝐞𝐞22 + 

+ 2𝜚𝜚3𝑓𝑓4

𝜋𝜋3
(𝜚𝜚  𝐞𝐞222 − 2𝐞𝐞33) + 𝑂𝑂(𝑓𝑓5),     (12) 

where 𝐈𝐈 is the identity matrix. The series (0.12) can 
be easily extended; see the high-order formulas in 𝑓𝑓 
in [6]. 

A series of relations was established in [13] for 
macroscopically isotropic composites. In particular, 

𝑒𝑒2 = 𝜋𝜋,    𝑒𝑒222 = 2𝜋𝜋𝑒𝑒22 − 𝜋𝜋3.  (13) 

Moreover, the following computationally effective 
formulas were derived in [13]  

𝑒𝑒22 = 1
𝑁𝑁3
∑𝑁𝑁𝑘𝑘=1 �∑𝑁𝑁𝑚𝑚=1 𝐸𝐸2(𝑎𝑎𝑘𝑘 − 𝑎𝑎𝑚𝑚)�2, 𝑒𝑒33 =

− 1
𝑁𝑁4
∑𝑁𝑁𝑘𝑘=1 �∑𝑁𝑁𝑚𝑚=1 𝐸𝐸3(𝑎𝑎𝑘𝑘 − 𝑎𝑎𝑚𝑚)�2.       (14) 

Formulas (13) and (14) after substitution into (12) 
yield the following formula for the effective 
conductivity of macroscopically isotropic 
composites  

𝜆𝜆𝑒𝑒
𝜆𝜆

= 1 + 2𝜚𝜚𝜚𝜚 + 2𝜚𝜚2𝑓𝑓2 +
2𝜚𝜚3𝑓𝑓3

𝜋𝜋2
𝑒𝑒22 +

2𝜚𝜚3𝑓𝑓4

𝜋𝜋2
 

((2𝑒𝑒22 − 𝜋𝜋2)𝜚𝜚 − 2𝜋𝜋𝑒𝑒33) + 𝑂𝑂(𝑓𝑓5).       (15) 

It is worth noting that 𝑒𝑒22 = 𝜋𝜋2  and 𝑒𝑒33 = 0  for 
the hexagonal and square regular arrays. Hence, (15) 
becomes  

𝜆𝜆ℎ𝑒𝑒𝑒𝑒
𝜆𝜆

= 1 + 2𝜚𝜚𝜚𝜚 + 2𝜚𝜚2𝑓𝑓2 + 2𝜚𝜚3𝑓𝑓3 + 

+2𝜚𝜚4𝑓𝑓4 + 𝑂𝑂(𝑓𝑓5).   (16) 

More accurate formulas up to 𝑂𝑂(𝑓𝑓27)  can be 
found in [6]. 

Computer simulations 

We are interested in random composites. Let 
contrast parameter 𝜚𝜚, the radius of inclusions, and 
concentration 𝑓𝑓  be fixed. Consider a class of 
random omposites 𝒦𝒦(𝑓𝑓),  whose centers form the 
uniform i.i.d. (independent and identically 
distributed) random variables. Class 𝒦𝒦(0)  is 
determined by the Poisson point process. Class 
𝒦𝒦( 𝜋𝜋

√12
) contains one element, the hexagonal array 

of touching disks.Structural sums 𝑒𝑒22 and 𝑒𝑒33 can 
be considered as random variables determined in 
a class 𝒦𝒦(𝑓𝑓). 

The feature vector of structural sums was 
studied by machine learning tools and data analysis 
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[14], where the classification method for composites 
with circular inclusions and composites with shapes 
formed by disks was developed. Structural sums 
𝑒𝑒33  and 𝑒𝑒88  were selected for analysis after the 
conjecture that 𝑒𝑒88 is related to the heterogeneity of 
disks in a pattern and 𝑒𝑒33 the clustering of disks. An 
irregularity measure of a sample similar to entropy 
was proposed [14]  

𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁 = log(1 − 𝑒𝑒33)(1 + 𝑒𝑒88).  (17) 

It should be noted that the regular hexagonal array 
of disks yields 𝑒𝑒33 = 𝑒𝑒88 = 0, hence, 𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁 = 0. 

In the present section, we consider feature vector 
(𝑒𝑒22, 𝑒𝑒33)  determining macroscopically isotropic 
composites in accordance with (15) up to 𝑂𝑂(𝑓𝑓5) . 
We also suggest a new formula for the irregularity 
measure, which includes concentration 𝑓𝑓  

𝜇𝜇(𝑓𝑓) = (1 + 2𝑓𝑓)log 𝑒𝑒22
𝜋𝜋2

+ 2𝑓𝑓log(1 − 𝑒𝑒33).  (18) 

It was proved in [13] that 𝑒𝑒22 ≥ 𝜋𝜋 and 𝑒𝑒33 ≤ 0 for 
any non-overlapping location of disks. The expected 
value of feature vector (𝑒𝑒22, 𝑒𝑒33)  depends on 𝑓𝑓 , 
hence, on radius 𝑟𝑟. 

Below, the computational experiments are per-
formed for classes of composites 𝒦𝒦𝛼𝛼(𝑓𝑓) , where 
0 ≤ 𝛼𝛼 ≤ 1 . Class 𝒦𝒦(𝑓𝑓) ≡ 𝒦𝒦1(𝑓𝑓)  is defined at 
the beginning of this section. Here, the centers 
are simulated with a radius 𝑟𝑟  corresponding to  
concentration 𝑓𝑓0 = 𝑁𝑁𝑁𝑁𝑟𝑟2  and 0 ≤ 𝑓𝑓 ≤ 𝑓𝑓0 . Any 
two different centers of 𝒦𝒦(𝑓𝑓)  satisfy inequality 
|𝑎𝑎𝑘𝑘 − 𝑎𝑎𝑚𝑚| ≥ 2𝑟𝑟. Class 𝒦𝒦𝛼𝛼(𝛼𝛼2𝑓𝑓) is a similar class 
for which |𝑎𝑎𝑘𝑘 − 𝑎𝑎𝑚𝑚| ≥ 2𝛼𝛼𝛼𝛼. This class corresponds 
to Keller’s concept of a "security" sphere (disk) 
[15, page 565]. It is convenient to consider classes 
with the same concentration, i.e. instead of 
𝒦𝒦𝛼𝛼(𝛼𝛼2𝑓𝑓)  to consider the equivalent class 𝒦𝒦𝛼𝛼(𝑓𝑓) , 

where 𝛼𝛼 = �𝑓𝑓
𝑓𝑓0

. 

An example of 𝑁𝑁 = 300 points ispresented in 
Figure 3. The coordinates of the points in Figure 3a 
are simulated by the sequence location of disks [16] 
in the unit square with 𝑟𝑟 = 0.02 , hence, with 
concentration 𝑓𝑓0 = 0.3770 . A location from class 
𝒦𝒦(0.3770)  is presented in Figure 3a. The 

coordinates of the points in Figures 3a and 3b 
coincide. Therefore, a location from class 
𝒦𝒦1

2
(0.0942)  is presented in Figure 3b, where 

1
4
𝑓𝑓0 = 0.0942. This means that the structural sums 

of the configurations in Figures 3a and 3b coincide, 
but the entropy (18) does not.  

  
Fig. 3. Simulation of non-overlapping disks: a) class 𝓚𝓚𝟏𝟏(𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑) 

with concentration 𝒇𝒇𝟎𝟎 = 𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 ; b) class 𝓚𝓚𝟏𝟏
𝟐𝟐
(𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎) 

with concentration 𝟏𝟏
𝟒𝟒
𝒇𝒇𝟎𝟎 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. Centers of disks coincide 

Statistical data for (𝑒𝑒22, 𝑒𝑒33) are selected by the 
following procedure. The computational experiment 
is conducted to research the structural sums in com-
posite materials using non-overlapping circles uni-
formly distributed in a square area. The main goal of 
the experiment is to calculate structural sums 𝑒𝑒22 
and 𝑒𝑒33  for randomly generated circles and their 
further interpretation. Structural sums allow us to 
quantify the interactions between inclusions in 
a composite and are important for understanding 
such effective material properties as thermal con-
ductivity. 

For each experimental variant, a new set of cir-
cle centers is created, and for each set, structural 
sums 𝑒𝑒22 and 𝑒𝑒33 are calculated. The first step in 
the simulation is to generate non-overlapping circles 
inside a square. The circles are randomly placed, and 
each new circle should not overlap with the existing 
ones. 

The Weierstrass (Eisenstein) elliptic functions 
are used to analyze the structure generated by cir-
cles, which are suitable for modeling periodic two-
dimensional systems. Functions 𝐸𝐸2 and 𝐸𝐸3 are de-
rived from the Weierstrass functions and are used in 
calculating structure sums 𝑒𝑒22 and 𝑒𝑒33. 
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A point graph for 100 experiments shows the 
computed values of 𝑒𝑒22 in Figure 4. The number of 
experiments 𝑡𝑡 is displayed on the 𝑥𝑥-axis and 𝑒𝑒22 
on the 𝑦𝑦-axis. The graph shows values fluctuating 
between 11.5  and 13.0 . The width of the red 
dashed line is equal to the double standard deviation 
of 𝑒𝑒22.  

 
Fig.4. Values of 𝒆𝒆𝟐𝟐𝟐𝟐 with mean value (dashed blue line) and standard 

deviation ranges (dashed red lines) 

In Figure 5, the analogous point graph shows the 
computed values of 𝑒𝑒33 for 100 experiments, with 
the results ranging between −6.5 and −5.0 across 
the iterations. 

 

Fig. 5. Values of 𝒆𝒆𝟑𝟑𝟑𝟑 with mean value (dashed blue line) and standard 
deviation ranges (dashed red lines) 

The histograms of 𝑒𝑒22 and −𝑒𝑒33 values in Fig-
ures 6 and 7, respectively, show the frequency of the 
occurrence of results across the experiments. This 
helps to understand the distribution of the structural 
sums.  

 

Fig. 6. Histogram of frequency of 𝒆𝒆𝟐𝟐𝟐𝟐 values depending on number of 
experiments 

 

 

Fig. 7. Histogram of frequency of −𝒆𝒆𝟑𝟑𝟑𝟑 values depending on number 
of experiments 

Figure 8 shows the relationship between the val-
ues of 𝑒𝑒22  and 𝑒𝑒33 . It can be considered a phase 
space set used in the ML of the considered class of 
simulated composite.  

 

Fig. 8. Relationship between structural sums 𝒆𝒆𝟐𝟐𝟐𝟐 and 𝒆𝒆𝟑𝟑𝟑𝟑. Points rep-
resent data for each experiment 
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The computed structural sums are used to ana-
lyze the effective properties of the considered com-
posites. For instance, the sums are applied to esti-
mate the effective conductivity of the composite, 
𝜆𝜆𝑒𝑒, based on a theoretical formula that includes both 
𝑒𝑒22 and 𝑒𝑒33. An analogous phase space was used in 
[14] to classify classes of composites by ML. 

The entropy values (18) are calculated for the 
simulated data and shown in Figures 9 and 12. The 
results are displayed for 𝑓𝑓 = 0.125664; the entropy 
range takes values from 2.26389 to 2.8992.  

 
Fig. 9. Entropy values 

Consider different classes of composites 𝒦𝒦𝛼𝛼(𝑓𝑓) 
for fixed concentration 𝑓𝑓 = 0.125664. We take the 
following number of centers: 𝑁𝑁 = 100, 400, 900,
1600, 2500,  and radii: 𝑟𝑟 = 0.02, 0.01, 0.00667,
0.005, 0.004, respectively. In this case, the number 
of centers 𝑁𝑁 and radii 𝑟𝑟 of the circles are related by 
the ratio 𝑓𝑓 = 𝜋𝜋𝑟𝑟2𝑁𝑁 with fixed 𝑓𝑓 = 0.125664. The 
ML phase set of all the points is displayed in Figure 
10. The set of their mean values over every class is 
presented in Figure 11, together with the circles 
equal to the standard deviation of the points of every 
class. 

The mean values of 𝑒𝑒22  and 𝑒𝑒33  were calcu-
lated for each experimental variant. These mean val-
ues served as the centers of the circles on the graph. 
For instance, if the mean value of 𝑒𝑒22 is 24.86 and 
the mean value of 𝑒𝑒33 is −54.5, the center of the 
circle will be located at the point (24.86,−54.5). 

The radius of each circle corresponded to the 
standard deviation of 𝑒𝑒22 and 𝑒𝑒33 for that particu-
lar dataset. The standard deviation shows how much 
the values fluctuate around the mean. Thus, a larger 
radius indicates more variability in the structural 
sums for that set of circles. 

 
Fig. 10. ML phase space 𝒆𝒆𝟐𝟐𝟐𝟐 and 𝒆𝒆𝟑𝟑𝟑𝟑 

 

Fig. 11. Centers of circles correspond to mean values of 𝒆𝒆𝟐𝟐𝟐𝟐 and 𝒆𝒆𝟑𝟑𝟑𝟑, 
while radii represent standard deviations 

 
Fig. 12. Entropy (18) calculated for all simulated points 
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CONCLUSIONS 

These graphs help to quickly identify patterns or 
inconsistencies across different experimental con-
figurations. If several circles are closely clustered 
with small radii, it indicates a more consistent and 
stable result. On the other hand, if there are large  
variations in the radii, it shows higher uncertainty or 
variation in the structural sums for that set of exper-
iments. The degree of deviation can be considered 
an ML feature in the classification of composites. 

Finally, the entropy values (𝜇𝜇(𝑓𝑓))  are calcu-
lated based on the structure sums, which measure 
the disorder in the system. These entropy values are 
calculated for each experiment. 

In the present paper, we consider the existing 
models suggested by AI and demonstrate that its rec-
ommendations should be carefully analyzed.. Nu-
merical calculation methods such as the FEM are not 
suitable for analyzing the effective conductivity of 
dispersed random composites due to their inherent 
limitations and impracticality. Before straightfor-
ward computations, we propose to use the construc-
tive analytical theory of homogenization to select 
the optimal parameters: the structural sums besides 
the concentration and the contrast parameter. Such 
a choice essentially reduces the computations and 
suggests a new ML phase space used for the classi-
fication of two-dimensional composites. 
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