

20: 3-4 (2020) 157-162

Milena Synowiec*, Karolina Zazakowny

AGH – University of Science and Technology, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków, Poland *Corresponding author. E-mail: milsyn@agh.edu.pl

Received (Otrzymano) 12.12.2020

ENHANCED VISIBLE LIGHT ABSORPTION OF SHAPE-CONTROLLED TiO2@Fe2O3 COMPOSITES

This article presents titanium(IV) oxide nanocrystals in the crystalline form of anatase obtained by hydrothermal synthesis using various shape-controlling agents. Two methods were applied. In the first, diethanolamine (DEA) was used as the shape-controlling agent and titanium(IV) isopropoxide (TTIP) as the TiO₂ precursor. In the second method, carbonate ions were responsible for controlling the shape, while potassium titanate nanowires (KTNWs) were the precursor of TiO₂. The expected application of the nanocrystals was related to the absorption of visible light. Therefore, the main goal was to modify shape-controlled TiO₂ with a narrow band semiconductor providing absorption of light in that range. Based on spectrophotometric analysis, it was found that the TiO₂@Fe₂O₃ composites possess a band gap in the range between 2.21 and 2.30 eV which originates from the Fe₂O₃ nanoparticles. Moreover, a small amount of Fe³⁺ ions was incorporated into the TiO₂ lattice, as evidenced by the band gap ranging from 2.85 to 2.95 eV.

Keywords: titanium dioxide nanocrystals, narrow band gap semiconductor, hematite, visible light absorption, TiO₂@Fe₂O₃ composites

ZWIĘKSZONA ABSORPCJA ŚWIATŁA WIDZIALNEGO W KOMPOZYTACH TiO₂@Fe₂O₃ O KONTROLOWANYM KSZTAŁCIE

Przedstawiono nanokryształy dwutlenku tytanu w postaci anatazu otrzymane w wyniku syntezy hydrotermalnej przy zastosowaniu różnych środków kontroli kształtu. W pierwszej metodzie użyto dietanoloaminy (DEA) jako środka regulującego kształt i izopropanolanu tytanu(IV) (TTIP) jako prekursora TiO₂. W drugiej metodzie za kontrolę kształtu odpowiadały jony węglanowe, a prekursorem były nanodruty tytanianu potasu (KTNWs). Mając na uwadze przyszle wykorzystanie otrzymanych nanokryształów w zastosowaniach związanych z absorpcją światła widzialnego, celem było zmodyfikowanie TiO₂ o kontrolowanym kształcie za pomocą półprzewodnika wąskopasmowego, którego absorpcja promieniowania obejmuje obszar widzialny. Uzyskane kompozyty TiO₂@Fe₂O₃ posiadają przerwę wzbronioną o wartości z przedziału od 2,21 do 2,30 eV pochodzącą od nanocząstek Fe₂O₃. Ponadto niewielka ilość jonów Fe³⁺ została wprowadzona do sieci TiO₂, o czym świadczy przerwa wzbroniona o wartości 2,85+2,95 eV.

Słowa kluczowe: nanokryształy dwutlenku tytanu, półprzewodnik wąskopasmowy, hematyt, absorpcja promieniowania widzialnego, kompozyty TiO₂@Fe₂O₃

INTRODUCTION

Titanium dioxide is one of the most frequently used semiconductors in fields such as photocatalysis [1-3], solar cells [4], self-cleaning coatings [5], and gas sensors [6] due to its nontoxicity, chemical stability, abundance, and low cost. Many attempts have been reported to improve the properties of TiO_2 in such a manner as to meet particular requirements relevant to these applications [7, 8]. One of the methods is to control the shape of the nanocrystals and expose selected crystallographic facets characterized by different surface energies [9-13]. Nevertheless, the problem of the too wide band gap of TiO_2 (3.2 eV) corresponding only to the absorption of UV light remains unsolved. To enable the absorption of visible light, semiconductors with a narrow band gap are often used, e.g. Fe_2O_3 , which is also inexpensive and environmentally friendly [14-18]. Due to its band gap equal to 2.2 eV, iron(III) oxide can absorb light of a wavelength above 560 nm [19]. $TiO_2@Fe_2O_3$ composites are promising materials, hence the knowledge about their interactions with light seems to be very important for future applications.

MATERIALS AND METHODS

Synthesis of TiO₂NCs

Method 1: Diethanolamine (DEA) was used as the shape-controlling agent and titanium(IV) isopropoxide

(TTIP) as the TiO₂ precursor. Titanium(IV) oxide nanocrystals were obtained by changing two parameters: the synthesis temperature and the molar ratio of tetrabutylammonium hydroxide (TBAH) to diethanolamine TBAH:DEA. The number of TTIP moles was constant. The M1.2 sample was prepared as follows: 26.7 ml of 1.5 M TBAH and 10 ml of 10.4 M DEA were poured into a Teflon container, which was placed in an ice bath, and stirred until the solution reached 5°C. Then, 0.9 ml of TTIP was added dropwise and the reaction mixture was raised to room temperature. Next, it was transferred to a hydrothermal reactor in which the synthesis occurred at 200°C for 24 hours with a stirring speed of 500 rpm. The M2.2, M3.2, M4.2, and M5.2 samples were prepared using the same reagent concentrations, and in some cases, the reaction temperature was increased to 215°C. Only the M6.2 sample was prepared using 133.5 ml of 0.1 M TBAH, 50 ml of 0.267 M DEA, and 4.5 ml of TTIP (at 215°C for 24 h). To remove organic impurities from the surface of the freshly synthesized powders, they were washed three times with 0.1 M hydrochloric acid, distilled water, and finally with ethanol. Then, they were dried in air at 60°C for 24 hours and calcined in air at 400°C for 3 h (Table 1).

Method 2: Carbonate ions were used for shape control, while KTNWs (potassium titanate nanowires) were the precursor. To obtain the KTNWs, 160 ml of 10 M KOH and 1 g of P25 were transferred to the hydrothermal reactor in which the synthesis took place at 200°C for 16 h. Then, they were washed five times with ethanol and dried in air at 60°C for 24 hours. The S1 sample was prepared as follows: 160 ml of distilled water was poured into a Teflon container and 1.5 g of KTNWs was added. After 15 minutes of sonication, 6 g of urea was also added. Synthesis took place at 20°C for 16 h. The obtained precipitation was washed five times with ethanol and dried in air at 60°C for 24 h. Subsequent materials were obtained by increasing the amount of KTNWs (1.5 g (S1)/3.0 g (S2)/4.5 g (S3)/6.0 g (S4)), while the amount of water and urea was constant (Table 1).

Synthesis of TiO₂@Fe₂O₃ composites

 $TiO_2@Fe_2O_3$ composites were prepared as follows: 1 g of TiO_2 powder was added to a beaker containing 50 ml of iron(III) chloride (0.0006 M) and sodium hydroxide (0.01 M) was added dropwise until the pH was 10. The precipitate was stirred for 24 h. The obtained powder was washed with distilled water until it reached the neutral pH. After that, it was dried in air at 60°C for 24 h and calcined at 350°C for 2 h (Table 1).

Characterization

The morphology of the bare and modified TiO_2 materials was investigated by means of a Nova NanoSEM 200 scanning electron microscope (SEM) equipped

with a Helix detector and a field emission gun (FEG). The SEM studies were combined with energy-dispersive X-ray spectroscopy (EDX). The crystal structure of the obtained materials was investigated using an X'Pert Pro PANalytical (Philips) diffractometer equipped with a copper anode as the radiation source (K_{a1} = = 0.15406 nm) in the range of 20° to 80° . Qualitative and quantitative analyses were performed using the Rietveld method, and the crystallite size was determined from the Scherer equation. The optical properties were analyzed using a Jasco V-670 UV-VIS-NIR spectrophotometer equipped with an integrating sphere (150 nm). The spectral dependence of the total reflectance $R_{tot}(\lambda)$ was measured in the range of 220÷ ÷2000 nm, and the band gap energy was calculated by differentiating total reflectance spectra $dR_{tot}/d\lambda$ and determining the positions of the maxima.

TABLE 1. Detailed conditions of material preparation TABELA 1. Szczegółowe warunki otrzymywania materiałów

TiO ₂ NC synthesis – method 1							
Sample	TBAH:DEA molar ratio	Synthesis time	Hydrothermal synthesis temperature				
M1.2	2:5		200°C				
M2.2	2:5		215°C				
M3.2	10:1	24 h	200°C				
M4.2	10:1	24 11	215°C				
M5.2	1:10		200°C				
M6.2	1:1		215°C				
TiO ₂ NC synthesis – method 2							
Sample	KTNW:urea mass ratio	Synthesis time	Hydrothermal synthesis temperature				
S1	1.5:6		200°C				
S2	3:6	16 h					
S3	4.5:6	10 11					
S4	6:6						
TiO ₂ @Fe ₂ O ₃ composite synthesis							
Sample	FeCl ₃ conc. [M]	NaOH conc. [M]	Fe/Ti wt.% from EDX				
$P25@Fe_2O_3$			0.012				
$M6.2@Fe_2O_3$	0.0006 0.01		0.009				
S4@Fe ₂ O ₃			0.008				

RESULTS

The hydrothermal method was applied to synthesize shape-controlled TiO_2 nanocrystals. The method based on varying the ratios of bridging the ligand-to-capping agent molar ratio (TBAH-to-DEA) was used. Figure 1 shows SEM micrographs of TiO₂ nanoparticles of different shapes. The sample symbol is in the upper-left corner of the microphotograph, and the shape of the nanocrystals in the upper-right corner. When the synthesis was carried out with TBAH:DEA = 2:5 at 200°C (M1.2 sample) homogeneous spherical grains with

a size ranging from 100 to 160 nm were obtained. However, they are aggregates composed of smaller particles with a size of ca. $20 \div 40$ nm. What is more, increasing the temperature of the processes escalates agglomeration. The M3.2 and M4.2 samples (TBAH:DEA = 10:1 at 200°C or 215°C, respectively) consist of nanorods with a length of 400÷700 nm and a width of 130÷180 nm. As can be seen in Figure 1, for the TBAH:DEA = 1:1 molar ratio, the M6.2 sample consists of nanorods with a length of 100÷240 nm and a width of 90÷100 nm. The M2.2 and M5.2 powders do not show a defined shape and are significantly agglomerated.

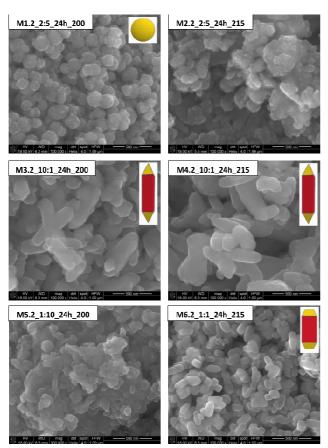
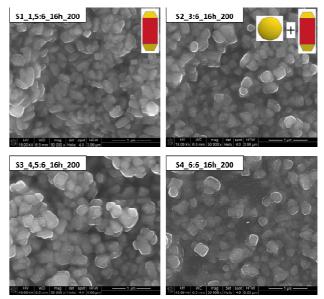
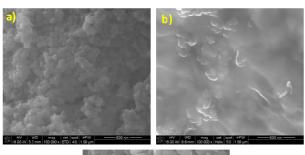


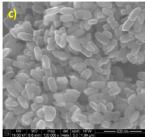
Fig. 1. SEM micrographs of TiO₂ nanocrystals synthesized from TTIP precursor. Top frame includes: sample symbol TBAH-to-DEA molar ratio synthesis time [h]_synthesis temperature [°C]

Rys. 1. Obrazy SEM nanokryształów TiO₂ zsyntetyzowanych przy użyciu prekursora TTIP. Górna ramka zawiera: symbol próbki_stosunek molowy TBAH do DEA_czas syntezy [h]_temperatura syntezy [°C]

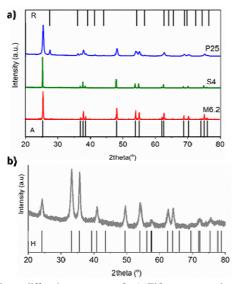
In the second method, carbonate ions were responsible for shape control. The weight fraction of the KTNWs in relation to urea (KTNWs:urea) was varied during the synthesis of the samples. The SEM micrographs of the obtained materials are shown in Figure 2. The synthesis of the S4 sample with the largest amount of precursor (KTNWs:urea = 6:6) leads to the fabrication of titanium dioxide nanocrystals. However, the TiO₂ NCs do not exhibit a well-defined shape. There are composed of smaller particles with a size of 20÷40 nm. At a higher urea concentration (KTNWs:urea = 4.5:6, S3 sample), an undefined shape of particles was ob-

tained as well. A further increase in the concentration of carbonate ions in the reaction solution (S2 sample) results in rod-like and spherical nanocrystals. The sample with the most homogeneous shape is S1 – the one that was synthesized using the largest amount of the shape-controlling agent (KTNWs:urea = 1.5:6). A The anatase nanocrystals, with a rod-like shape and a length of $350 \div \pm 460$ nm, are aggregates composed of smaller particles similar to all of the other discussed materials (S2-S4).


Fig. 2. SEM micrographs of TiO₂ nanocrystals synthesized from KTNW precursor. Top frame includes: sample symbol _KTNWs:urea mass ratio_synthesis time [h]_synthesis temperature [°C]

Rys. 2. Obrazy SEM nanokryształów TiO₂ zsyntetyzowanych przy użyciu prekursora KTNWs. Górna ramka zawiera: symbol próbki_ stosunek masowy KTNWs:mocznika_czas syntezy [h]_temperatura syntezy [°C]

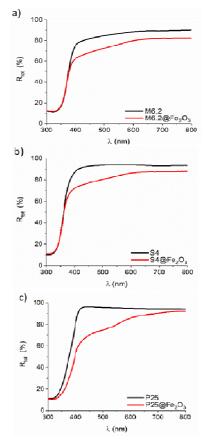

Selected TiO₂ nanocrystals (S4, M6.2, and the commercial P25 powder) were used to be covered with Fe₂O₃ particles via the co-precipitation method. The chemical composition of the obtained TiO₂@Fe₂O₃ composites was investigated by EDX analysis. The presence of small amounts of iron(III) oxide was confirmed for all the materials. The content of Fe defined as the Fe/Ti weight percentage (wt.%) was 0.008, 0.009, and 0.012 for S4@Fe₂O₃, M6.2@Fe₂O₃ and P25@Fe₂O₃, respectively. The SEM examination did not allow to determine the distribution of the iron(III) oxide particles on the titanium(IV) oxide surface because the amount of Fe₂O₃ was too small to be detected (Fig. 3).

The XRD results for the pure TiO₂ powders are presented in Figure 4. The top and bottom bars represent the rutile (R), anatase (A) (Fig. 4a), and hematite (H) (Fig. 4b) peak positions. The qualitative analysis allowed the crystal structure of the samples to be determined. The M6.2 nanocrystals crystalize in the anatase structure, while the S4 NCs are composed of anatase, which is a major phase, and a small amount of rutile (0.3%) (Fig. 4a). The commercial P25 powder is a mixture of anatase and rutile polymorphs. The amount of Fe₂O₃ in the TiO₂@Fe₂O₃ composites was below the detection level of the XRD method, and thus, no hematite peaks were observed. Therefore, to confirm the structure of iron(III) oxide, pure Fe₂O₃ was synthesized using the same method. The peak positions in the diffractogram (Fig. 4b) indicate single-phase α -Fe₂O₃. The sizes of the anatase and hematite crystallites were determined using the Scherrer equation. The larger crystallites, ca. 118 nm, were obtained by the second method, where the amount of KTNWs was increased.

- Fig. 3. SEM micrographs of Fe₂O₃-modified TiO₂ nanocrystals: a) P25@Fe₂O₃, b) S4@Fe₂O₃, c) M6.2@Fe₂O₃
- Rys. 3. Obrazy SEM nanokryształów TiO₂ modyfikowanych Fe₂O₃: a) P25@Fe₂O₃, b) S4@Fe₂O₃, c) M6.2@Fe₂O₃

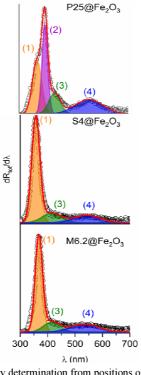
- Fig. 4. X-ray diffraction patterns of: a) TiO₂ nanocrystals and P25,
 b) Fe₂O₃ obtained by same method as TiO₂@Fe₂O₃ composite but without addition of TiO₂ powders
- Rys. 4. Dyfraktogramy: a) nanokryształów TiO₂ oraz P25, b) Fe₂O₃ otrzymanego tą samą metodą co kompozyty TiO₂@Fe₂O₃, ale bez dodatku proszku TiO₂

On the other hand, when the TBAH:DEA molar ratio was changed, the first method gave a crystal with a size of about 38 nm. It was also found that iron(III) oxide crystallites with a size of ca. 8 nm are the smallest (Table 2).


- TABLE 2. Phase composition and crystallite size calculated from Rietveld refinement for TiO₂ and Fe₂O₃ powders
- TABELA 2. Skład fazowy oraz rozmiar krystalitów wyliczony z dopasowania Rietvelda dla proszków TiO₂ oraz Fe₂O₃

Sample	Anatase [wt.%]	Rutile [wt.%]	Crystallite size [nm]	
P25	82.1%	17.9%	12.5*/14.1**	
M6.2	100%	-	37.6	
S4	99.7%	0.3%	118.3	
Fe_2O_3	100% hematite		8.2	

*anatase, **rutile


The deposition of iron(III) oxide on the titanium(IV) oxide surface aimed to extend the absorption range from UV to visible light. However, because the light must reach both components of the composite, it is undesirable to completely cover the surface of TiO_2 by Fe_2O_3 . Therefore, only a small amount of Fe_2O_3 was applied.

The spectral dependences of the total reflectance measured for the pure TiO_2 NCs and the TiO_2 NCs covered with Fe_2O_3 are presented in Figure 5a and b, respectively.

- Fig. 5. Spectral dependence of total reflectance: a) TiO_2 nanocrystals and P25, b) $TiO_2@Fe_2O_3$ composites
- Rys. 5. Spektralna zależność całkowitego współczynnika odbicia: a) nanokryształy TiO₂ i P25, b) kompozyty TiO₂(*a*)Fe₂O₃

The significant reduction in the total reflectance coefficient in the visible range of light is clear proof of the narrow band gap Fe₂O₃ deposition on the wide band gap TiO₂. The calculated band gap energies from the first derivative $dR_{tot}/d\lambda$ plots [20] (Fig. 6) are listed in Table 3. Two optical transitions (1) 3.35÷3.48 eV and (2) $3.11 \div 3.13$ eV correspond to the band gap energies of anatase and rutile, respectively. The energy of 2.21÷ $\div 2.30 \text{ eV}$ (4) can be interpreted as the direct band gap of α -Fe₂O₃ [21]. The additional band gap (3) in the range of 2.85÷2.95 eV can be assigned to the acceptor level in the forbidden band of titanium(IV) oxide formed by the incorporated Fe^{3+} ions into the TiO₂ lattice [22]. What should be emphasized is that in contrast to the structural studies (XRD), the analysis of the optical properties of the $TiO_2(a)Fe_2O_3$ composites proves the presence of the iron(III) oxides phase.

- Fig. 7. Band gap energy determination from positions of maxima in first-derivative plot for $TiO_2@Fe_2O_3$ composites
- Rys. 7. Wyznaczanie energii przerwy wzbronionej z położenia maksimów na wykresie pierwszej pochodnej dla kompozytów TiO₂@Fe₂O₃

TABLE 3. Band-gap energy for TiO₂ and TiO₂@Fe₂O₃ composites

TABELA 3. Energia przerwy wzbronionej dla TiO₂ oraz kompozytów TiO₂@Fe₂O₃

Sample	Photon energy [eV]				
	(1)	(2)	(3)	(4)	
P25	3.39	3.11	-	-	
$P25@Fe_2O_3$	3.40	3.13	2.85	2.21	
S4	3.47	-	-	-	
S4@Fe ₂ O ₃	3.48	-	2.95	2.27	
M6.2	3.35	-	-	-	
$M6.2@Fe_2O_3$	3.38	-	2.94	2.30	

CONCLUSIONS

The titanium(IV) oxide nanocrystals in the anatase polymorph were obtained by hydrothermal synthesis. The shape control was based on changing the TBAHto-DEA ratio, while the number of TTIP moles remained constant. The influence of the synthesis temperature on the obtained form of nanocrystals was also investigated. At the TBAH:DEA molar ratio equal to 2:5 and synthesis temperature of 200°C, nanospheres (M1.2) composed of smaller TiO₂ crystallites were obtained. At the molar ratio of 10:1, regardless of the temperature, nanorods were obtained (M3.2, M4.2). The application of other molar ratios led to significant particle agglomeration and did not result in a distinct shape of TiO₂. The M6.2 nanocrystals prepared using an approximately 40-fold diluted shape-controlling agent and 15-fold diluted TBAH were characterized by the most uniform morphology forming nanorods with clearly distinguishable crystal facets.

In the second method, carbonate ions were responsible for shape control, and the weight fraction of KTNWs in relation to urea was increased. The microstructural studies showed that only with a small addition of the precursor (S1, S2), the amount of carbonate ions was sufficient to effectively control the shape of TiO₂. In terms of crystal structure, the anatase polymorph was obtained by the M6.2 sample, while the S4 nanocrystals were found to be a mixture of anatase with a small amount of rutile (0.3 wt.%). The band gap of the studied titanium(IV) oxide materials varied in the range of $3.35 \div 3.48$ eV. The values of band gap energy were affected by the different sizes of the crystallites forming the nanocrystals.

The modification of TiO₂ by covering the surface with iron(III) oxide allowed a reduction in the total reflectance of the M6.2@Fe₂O₃ and S4@Fe₂O₃ composites by over 10% in the visible range of light. However, the TiO₂ nanocrystals covered with Fe₂O₃ did not show such large changes in the optical properties as in the case of the P25@Fe₂O₃ composite. This effect is related to the different proportions of high-energy surfaces in both forms of TiO₂. It was also found that the composites possess two additional optical transitions, first in the range of 2.21÷2.30 eV (Fe₂O₃ nanoparticles) and second in the range of 2.85÷2.95 eV assigned to the result of incorporating Fe³⁺ ions into the TiO₂ lattice.

Acknowledgements

M.S. has been partly supported by the EU Project POWR.03.02.00-00-I004/16.

REFERENCES

 Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., Bahnemann D.W., Understanding TiO₂ photocatalysis: Mechanisms and materials, Chem. Rev. 2014, 114, 9919-9986.

- [2] Zhao X., Jin W., Cai J., Ye J., Li Z., Ma Y., Xie J., Qi L., Shape- and size-controlled synthesis of uniform anatase TiO₂ nanocuboids enclosed by active {100} and {001} facets, Adv. Funct. Mater. 2011, 21, 3554-3563.
- [3] Ye L., Liu J., Tian L., Peng T., Zan L., The replacement of {101} by {010} facets inhibits the photocatalytic activity of anatase TiO₂, Appl. Catal. B Environ. 2013, 134-135, 60-65.
- [4] Kontos A.I., Kontos A.G., Tsoukleris D.S., Bernard M.C., Spyrellis N., Falaras P., Nanostructured TiO₂ films for DSSCS prepared by combining doctor-blade and sol-gel techniques, J. Mater. Process. Technol. 2008, 196, 243-248.
- [5] Euvananont C., Junin C., Inpor K., Limthongkul P., Thanachayanont C., TiO₂ optical coating layers for selfcleaning applications, Ceram. Int. 2008, 34, 1067-1071.
- [6] Lin S., Li D., Wu J., Li X., Akbar S.A., A selective room temperature formaldehyde gas sensor using TiO₂ nanotube arrays, Sensors Actuators, B Chem. 2011, 156, 505-509.
- [7] Menzel R., Duerrbeck A., Liberti E., Yau H.C., McComb D., Shaffer M.S.P., Determining the morphology and photocatalytic activity of two-dimensional anatase nanoplatelets using reagent stoichiometry, Chem. Mater. 2013, 25, 2137-2145.
- [8] Li C., Koenigsmann C., Ding W., Rudshteyn B., Yang K.R., Regan K.P., Konezny S.J., Batista V.S., Brudvig G.W., Schmuttenmaer C.A. et al., Facet-dependent photoelectrochemical performance of TiO₂ nanostructures: An experimental and computational study, J. Am. Chem. Soc. 2015, 137, 1520-1529.
- [9] Roy N., Park Y., Sohn Y., Leung K.T., Pradhan D., Green synthesis of anatase TiO₂ nanocrystals with diverse shapes and their exposed facets-dependent photoredox activity, ACS Appl. Mater. Interfaces 2014, 6, 16498-16507.
- [10] Li J., Yu Y., Chen Q., Li J., Xu D., Controllable synthesis of TiO₂ single crystals with tunable shapes using ammoniumexchanged titanate nanowires as precursors, Cryst. Growth Des. 2010, 10, 2111-2115.
- [11] Chen C., Hu R., Mai K., Ren Z., Wang H., Qian G., Wang Z., Shape evolution of highly crystalline anatase TiO₂ nanobipyramids, Cryst. Growth Des. 2011, 11, 5221-5226.
- [12] Wu L., Yang B.X., Yang X.H., Chen Z.G., Li Z., Zhao H.J., Gong X.Q., Yang H.G., On the synergistic effect of hydrohalic acids in the shape-controlled synthesis of anatase

 $\rm TiO_2$ single crystals, Cryst. Eng. Comm. 2013, 15, 3252-3255.

- [13] Kusior A., Synowiec M., Zakrzewska K., Radecka M., Surface-controlled photocatalysis and chemical sensing of TiO₂, α -Fe₂O₃, and Cu₂O nanocrystals, Crystals 2019, 9.
- [14] Mishra M., Chun D.M., α -Fe₂O₃ as a photocatalytic material: A review, Appl. Catal. A Gen. 2015, 498, 126-141.
- [15] Zhang J., Kuang M., Wang J., Liu R., Xie S., Ji Z., Fabrication of carbon quantum dots/TiO₂/Fe₂O₃ composites and enhancement of photocatalytic activity under visible light, Chem. Phys. Lett. 2019, 730, 391-398.
- [16] Mei Q., Zhang F., Wang N., Yang Y., Wu R., Wang W., TiO₂/Fe₂O₃ heterostructures with enhanced photocatalytic reduction of Cr(VI) under visible light irradiation. RSC Adv. 2019, 9, 22764-22771.
- [17] Yang X., Liu R., Du C., Dai P., Zheng Z., Wang D., Improving hematite-based photoelectrochemical water splitting with ultrathin TiO₂ by atomic layer deposition, ACS Appl. Mater. Interfaces 2014, 6, 12005-12011.
- [18] Li X., Bassi P.S., Boix P.P., Fang Y., Wong L.H., Revealing the role of TiO₂ surface treatment of hematite nanorods photoanodes for solar water splitting, ACS Appl. Mater. Interfaces 2015, 7, 16960-16966.
- [19] Mansour H., Letifi H., Bargougui R., De Almeida-Didry S., Negulescu B., Autret-Lambert C., Gadri A., Ammar S., Structural, optical, magnetic and electrical properties of hematite (α-Fe₂O₃) nanoparticles synthesized by two methods: polyol and precipitation, Appl. Phys. A Mater. Sci. Process. 2017, 123, 10 pages.
- [20] Kusior A., Zych L., Zakrzewska K., Radecka M., Photocatalytic activity of TiO₂/SnO₂ nanostructures with controlled dimensionality/complexity, Appl. Surf. Sci. 2019, 471, 973-985.
- [21] Chernyshova I.V., Ponnurangam S., Somasundaran P., On the origin of an unusual dependence of (bio)chemical reactivity of ferric hydroxides on nanoparticle size, Phys. Chem. Chem. Phys. 2010, 12, 14045-14056.
- [22] Santos R.D.S., Faria G.A., Giles C., Leite C.A.P., Barbosa H.D.S., Arruda M.A.Z., Longo C., Iron insertion and hematite segregation on Fe-doped TiO₂ nanoparticles obtained from sol-gel and hydrothermal methods, ACS Appl. Mater. Interfaces 2012, 4, 5555-5561.