Tribological properties of heterophase composites with ceramic and amorphous carbon particles composition
Jerzy Myalski, Jakub Wieczorek, Anna Dolata-Grosz, Józef Śleziona Politechnika Śląska, Wydział Inżynierii Materiałowej i Metalurgii, ul. Krasińskiego 8, 40-019 Katowice
Quarterly No. 2, 2005 pages 11-16
DOI:
keywords:
abstract Aluminium-based metal matrix composites are well-known for their high specific strength, stiffness and hardness. They are gaining further importance as their potential for wear resistance becomes established. In general, for sliding against metal and abrasives, many studies have reported that composites exhibit better wear resistance than the unreinforced alloys. The subject of the article are heterophase composites (ceramic particles, class carbon type) and production and evaluation of their tribological properties. The reduction of the results of the hard reinforcement particles influence on the collaborative element is possible thanks to the application of heterophase reinforcement (composed of several kind of reinforcement particles) (Tab. 1). The solution presented in the article assumes the wear reduction in the dry sliding conditions through the appli- cation of the Al2O3 and glass carbon mixture and SiC and glass carbon mixture as the reinforcement. For all samples sliding distance was 5000 m, load 35N and sliding velocity 0.5 m/s. Abrasion was carried out with the use of tribological tester T-01 pin-on-disc (Fig. 2). Composite materials for the investigation composed of AK12+30% (Al2O3) were produced with the use of the suspension method. Generated material was formed in the shape of sleeve with the application of centrifugal casting. It permitted to produce composite layer which structure was composed of glass carbon particles surrounded by smaller diameter Al2O3 or SiC particles (Fig. 1). The investigation of the frictional composite-cast iron couple association conducted in the dry sliding conditions proved that addition of 5% glass carbon reduces 30% of cast iron wear and 20% of the friction coefficient (Figs 3 and 4). Microscopic examination of the erosion trace showed that heterophase reinforcement reduces composite abrasive wear (Tab. 2). Conducted researches gave expected results and further investigation will focus on the optimization of the phase composition proportion. Key words: aluminium alloy, ceramic particles, glass carbon, tribological properties