We use COOKIES and other similar technologies that generate data for analyzes and statistics. You can block the saving of COOKIES by changing your browser settings. Detailed information about COOKIES and other technologies in Privacy policy.

COMPOSITES THEORY AND PRACTICE

formerly: KOMPOZYTY (COMPOSITES)

The effect of reinforcing fabric type on mechanical performance of laminar FR epoxy composite

Mateusz Kozioł

Quarterly No. 1, 2012 pages 60-65

DOI:

keywords: laminate, tow size K, areal weight, plain weave, twill weave, carbon fibres, glass fibres, Kevlar

article version pdf (0.45MB)

abstract The scope of the study is the experimental evaluation of the effect of the main characteristics of fabrics used as a reinforcement of polymer matrix composites on the mechanical performance of composites. The characteristics taken into consideration are: (1) fibre material - Kevlar, carbon, glass, (2) areal weight - 90 and 300 g/m2; only for glass fibre, (3) reinforcement form - plain weave fabric, chopped mat; only for glass fibre, (4) weave type - plain, twill; only for carbon fibre, (5) tow size K - 2, 3, 12; only for carbon fibre. Static flexural tests were conducted for all the specimens. The flexural strength (Rg), flexural modulus (Eg) and the strain by maximum load obtained during bending (Epsilon) have been determined. It was found that the material of reinforcing fibres has an essential effect on the mechanical performance of a laminate. Laminates reinforced with carbon fibres had/obtained/achieved thegreatest Rg and Eg. Glass-reinforced (GFRP) laminates performed slightly better in comparison to Kevlar-reinforced ones. However, the Kevlar-reinforced laminates showed the highest deformability at high load. An increase in areal weight of a reinforcing fabric causes a growth in the Rg and Eg and a decrease in deformability of a GFRP laminate. The reinforcement form evidently affects the mechanical performance of a laminate. The GFRP 0/90 fabric reinforced laminate showed an Rg half higher in comparison to the equivalent chopped-matt reinforced one. The twill carbon fabric FRP laminate showed a slightly lower Rg and Eg, whilst a bit higher deformability in comparison to the plain weave carbon fabric FRP one. The tow size K practically does not affect the strength or deformability of a CFRP laminate. However, an increase in K causes a drop in the elastic modulus of the composite.

Wykonanie: www.ip7.pl