We use COOKIES and other similar technologies that generate data for analyzes and statistics. You can block the saving of COOKIES by changing your browser settings. Detailed information about COOKIES and other technologies in Privacy policy.

COMPOSITES THEORY AND PRACTICE

formerly: KOMPOZYTY (COMPOSITES)

The effect of precursor thermal decomposition temperature on properties of the acquired Al2O3-Ag2O nanopowders

Agnieszka Jastrzębska, Antoni Kunicki, Andrzej Olszyna

Quarterly No. 3, 2010 pages 270-275

DOI:

keywords: nanoalumina, nanosilver, nanosilver oxide, nanoparticles, nanopowder, thermal decomposition - reduction process, thermal decomposition process, temperature effect, bioactivity

article version pdf (1.02MB)

abstract Nanosilver particles on nanoalumina support, having good antimicrobial properties, can be obtained by the innovatory thermal decomposition-reduction route, developed by us earlier. Our previous investigations have proved that as a result of thermal decomposition process Al2O3/Ag2O nanopowder has been obtained as a middle product. Subsequent reduction process leads to the acquirement of Al2O3/Ag nanopowder. It was found that the key step determining morphology and properties of the final product (Al2O3/Ag nanocomposite) was thermal decomposition of the organic precursor. That is why; due to provide complete characterization of this process the effect of its temperature on the morphology and physical parameters such as specific surface area, porosity and density of middle product (Al2O3/Ag2O nanopowder) was investigated. The obtained results indicate that temperature of organic precursor thermal decomposition process have a significant affect on morphology and physical parameters of produced Al2O3/Ag2O nanopowders. Average particle size of the nanopowders held at a temperature of 700°C was smaller on about 20 nm than those, held at the temperature of 800°C. Also, their specific BET surface area was higher on about 50 m2•g–1 and was over 200 m2•g–1 with the total open porosity on about 1.3 cm3•g–1. Characterization of middle step of the nanocomposite Al2O3/Ag production process allowed determining optimal temperature of Al2O3/Ag2O raw material nanoparticles, which was 700°C and enabled to minimalise agglomeration and nanoparticle growth phenomenon of this raw material in Al2O3/Ag nanocomposite production. It is predicted that it will also result in improvement of biocidal properties of produced Al2O3/Ag nanocomposites.

Wykonanie: www.ip7.pl