Shear thickening ceramic-polymer composite
Radosław Żurowski, Agnieszka Antosik, Małgorzata Głuszek , Mikołaj Szafran
Quarterly No. 4, 2015 pages 255-258
DOI:
keywords: STF (shear thickening fluids), silica, dilatant effect, poly(propylene glycol), protective materials
abstract Shear thickening fluids (STF), which are included in non-Newtonian fluids, are a good example of innovative ceramic- -polymer composites. Their characteristic feature is that the viscosity increases with an increase in shear rate. The energy is dissipated during the impact due to the increasing resistance of STF. This is the reason why STF are so promising for applications protecting the human body. Body armours based on STF, because of their elasticity in comparison to conventional counterparts, proved to be more comfortable. This work is devoted to the development of a new composition of STF with the highest dilatant effect. Based on our research on STF, it was shown that the higher the dilatant effect is, the more energy is absorbed during the impact. In this case, four different systems were prepared in which the main component of the solid phase was submicron silica powders KE-P10 (particle size 100÷200 nm) or KE-P50 (particle size 500÷600 nm). In all the prepared systems, the carrier fluid was poly(propylene glycol) with a molecular weight of 2000 g/mol (PPG 2000). The rheological properties of the systems were determined. The influence of the solid phase concentration, size of the particles and the temperature on the dilatant effect properties were examined. Rheological stability in time was also presented in this paper for certain compositions. The most satisfying results were achieved by the systems with KE-P10 in the amount of 60 volume percent. The dilatant effect at the temperature of 25°C reached 11 243 Pa·s, while the beginning of shear thickening was observed at the shear rate of 0.88 s−1. What is worth mentioning is that the obtained results are repeatable in different time intervals, meaning that the investigated fluid is rheologically stable in time. Despite the drop in the dilatant effect by 70% at higher temperatures, the dilatant effect remained on a high level of 3000 Pa·s. Regarding the obtained results, we can assume that body armour based on the ceramic-polymer composite would be suitable for protection even at higher temperatures.