We use COOKIES and other similar technologies that generate data for analyzes and statistics. You can block the saving of COOKIES by changing your browser settings. Detailed information about COOKIES and other technologies in Privacy policy.

COMPOSITES THEORY AND PRACTICE

formerly: KOMPOZYTY (COMPOSITES)

Polymer-fibre composites with three-dimensional reinforcement

Mateusz Kozioł, Józef Śleziona Politechnika Śląska, Katedra Technologii Stopów Metali i Kompozytów, ul. Krasińskiego 8, 40-019 Katowice, Poland

Quarterly No. 2, 2008 pages 123-129

DOI:

keywords: delamination thoughness, 3D laminates, stitched laminate, stitching parametres

article version pdf (2.32MB)

abstract The paper presents recent knowledge about manufacturing and application of the 3D laminates. Methods of producing of 3D reinforcing preforms by weaving, stitching, braiding and knitting are discussed. Main methods of manufacturing of the laminates from 3D preforms - RTM and RFI - are also discussed. It has been concluded, that RFI method is better for manufacturing big products of complicated shape. RTM is suitable for all products which are able to be impregnated in 2-part mould. There have been presented mechanical properties of 3D laminates manufactured from 3D preforms: stitched, woven, braided and knitted. It was concluded that 3D laminates have excelent mechanical properties. For reinforcement with 3D graphite woven fabric flexural strength amounts about 800 MPa. For reinforcement with 3D graphite braided fabric it reaches even 885 MPa. In both cases the strength is significantly higher than for equivalent 2D laminates. It testifies advantageous influence of well structure order and of limiting the delamination processes, which deteriorates strength (especially flexural) in classic laminates. 3D graphite knitted fabrics show compression strength up to 700 MPa - such amount is unobtainable for equivalent 2D laminates. Exemplary 3D composite products have been discussed: aircraft wing and skin panels, gas turbine for a compressor, rocket thrustcell, coupling shaft, car chassis, bike-helmet and protective-helmet. Each of these products was manufactured by optimal technology. 3D laminates are excelent construction materials. In near future we may expect their further development, especially for resposible elements.

Wykonanie: www.ip7.pl