Physical and mechanical characterization of structural lightweight concrete with synthetic aloxite additive
Agnieszka Ślosarczyk, Teresa Kantel, Maciej Walaszkowski, Paweł Zasada
Quarterly No. 4, 2015 pages 209-213
DOI:
keywords: lightweight concrete, aloxite, physical and mechanical properties, SEM analysis
abstract The recent years of intensive development in construction as well as growing demands has resulted in much greater attention paid to concretes for special applications, such as lightweight structural concretes. The advantage of lightweight structural concretes lies in the lower weight of the construction elements (the density of lightweight concretes equals less than 2000 kg/m3) and high strength parameters, which further lead to lower production costs. Moreover, lightweight concretes can be considered so-called ”green products”, as lightweight aggregates received from waste materials, such as fly ashes, are used for their production. Conducted research has shown that aloxite usage has a great influence on the physical and mechanical properties of lightweight structural concretes. The best results were achieved for a concrete mix with an additive of finegrained aloxite particles. The presence of aloxite fine fractions (F280) in concrete contributed to condensation of the cement paste structure and strengthening the interfacial transition zone between the porous lightweight aggregate and cement paste, improving the physical and mechanical properties of the concrete composite. It was shown that the compressive strength of concrete samples with an aloxite additive increases by about 25÷35% in relation to reference samples. Moreover, the aloxite additive improved the resistance to abrasion by about 30÷40% in comparison to concrete made without additives. In addition, the research proved that aloxite particles show a plasticizing effect and facilitate stirring of the concrete mix, especially in the presence of lightweight aggregate, which leads to a more homogeneous structure of concrete and improvement of concrete tightness by about 35÷50% in relation to the reference concrete.