We use COOKIES and other similar technologies that generate data for analyzes and statistics. You can block the saving of COOKIES by changing your browser settings. Detailed information about COOKIES and other technologies in Privacy policy.

COMPOSITES THEORY AND PRACTICE

formerly: KOMPOZYTY (COMPOSITES)

Fiber shape selection problems in material models used in numerical strength analysis of wood-polymer composites

Wiesław Frącz, Grzegorz Janowski

Quarterly No. 2, 2019 pages 50-55

DOI:

keywords: wood-polymer composites, homogenization methods, micromechanical analysis, numerical simulations, filler shape model, injection molding process

article version pdf (0.70MB)

abstract The paper presents the problems in selecting the fiber shape in numerical strength analysis for wood-polymer composites. For this purpose numerical analysis of the uniaxial tensile test for the wood-polymer composite sample was performed. Variable geometry of the fiber model was used. The fiber orientation data were obtained using Autodesk Moldflow Insight 2016 software. Micromechanical calculations based on homogenization methods were performed using Digimat FE commercial code. The results of the numerical simulations were compared with the experiment ones. To manufacture the WP composite, Moplen HP 648T polypropylene (PP) from Basell Orlen Polyolefins was used as the polymer matrix. As the filler 10 vol.% Lignocel C120 wood fiber manufactured by JRS - J. RETTENMAIER & Söhne Company was used. Adhesion promoter P613 by Dupont was used as well. A Dr Boy 55E injection molding machine was used to produce the test specimens. It was noted that the selection of the fiber shape has a significant impact on the consistency of the obtained results and consequently on compliance with the experiment ones. Fiber location calculations were performed for each geometry type available in the Digimat software. The most consistent results for numerical homogenization (Digimat FE) are associated with the choice of a curved cylinder shape of fiber. This may be due to the greatest convergence of the orientation tensor value received from the numerical simulation of the injection molding process during its transformations to the representative volume element model. In addition, this result may be due to the fact that the curved cylinder type of geometry is characterized by the most variable shape due to the degree of curvature. This reflects the real, non-standard problems to determine the shape of the wood fiber in the polymer matrix.

Wykonanie: www.ip7.pl