Effect of cross-section geometry on load capacity of single-wave composite segment
Marian Klasztorny, Daniel Nycz
Quarterly No. 1, 2013 pages 40-46
DOI:
keywords: polymer-matrix fibre-reinforced composite cover, single-wave rectangular segment, glass-polyester laminate, three-point bending test, cross-section, multi-criteria optimization
abstract The study examines a shell segment made of glass-polyester layered composites with fabric- or mat-reinforced layers. The segment is a single-wave, single-shell, and simply supported one, with a span, whose initial geometry and ply sequences were patterned after the cover segments of a selected rectangular tank in a sewage treatment plant in Germany. The aim of the study is multi-criteria quasi-optimization of the cross-section shape of the shell of the segment with flat flanges, with fixed, overall dimensions and ply sequences. The segment is subjected to a static three-point bending test with kinematic excitation. The optimization criteria are as follows: maximum load capacity of the segment, minimum weight of the segment, technological feasibility, and architectural effect. Numerical models of the segments with specified geometry of the cross-section (6 objects in total) were built using the Altair HyperMesh 11.0 system (finite element mesh) and MSC.Marc / Mentat 2010 (analysis set). The geometries were earlier prepared in the Generative Shape Design Catia v5r19 module. The numerical calculations (simulations) were performed using the MSC.Marc 2010 solver for non-linear analyses. The methodology for modelling and simulation of the composite shells, developed in the authors’ previous papers, has been applied.