We use COOKIES and other similar technologies that generate data for analyzes and statistics. You can block the saving of COOKIES by changing your browser settings. Detailed information about COOKIES and other technologies in Privacy policy.

COMPOSITES THEORY AND PRACTICE

formerly: KOMPOZYTY (COMPOSITES)

Acoustic emission in monitoring composite bridgestructures

Radosław Karczewski, Łukasz Gołębiowski, Rafał Molak, Jan Płowiec, Wojciech Leon Spychalski

Quarterly No. 2, 2015 pages 112-116

DOI:

keywords: reinforced fiber polymers, acoustic emission, composite bridge structures

article version pdf (0.49MB)

abstract The studies carried out were aimed at developing guidelines for the procedure of employing the Acoustic Emission (AE) method for ensuring the required manufacturing quality and operating safety of composite bridge structures. For the studies, the experience gathered in the studies of thin-walled components made for the aeronautics, automotive and boatbuilding sectors was used. The focus was components with a significant thickness (14÷16 mm) which are, by their nature, less homogeneous and can have more defects when compared to thin-walled composites. The studies carried out for the purpose of this work demonstrate the system for the acceptance tests of composite structures. The demonstrator model in question was developed based on laboratory tests of composite components and of parts of a prototypical structure under load, as described in this work. The recorded acoustic signals were analyzed using software enabling the authors to analyze numerous parameters of the signals and to locate the recorded acoustic emission artifacts. The developed procedures were verified in AE tests in four-point bending of a prototype composite beam with the length of 15.3 m. The nominal operating load and loads significantly exceeding the operating conditions were applied for the tests. The results obtained enabled the authors to study the destruction of composite beams. Based on the signal analyses, the sites of local composite damage were identified and the stage when the global structure damage took place was foreseen. Multiparameter analysis of the recorded acoustic signals made it possible to determine the kinetics of defect growth. The results of the tests carried out for this work helped to develop guidelines for the procedure of acoustic emission testing for composite road bridges at the stage of handing them over for use and in the periodic monitoring period for the used bridge structure.

Wykonanie: www.ip7.pl